# Area and length preserving geometric invariant scale-spaces

## Abstract

In this paper, area preserving geometric multi-scale representations of planar curves are described. This allows *geometric smoothing without shrinkage* at the same time preserving all the scale-space properties. The representations are obtained deforming the curve via invariant geometric heat flows while simultaneously magnifying the plane by a homethety which keeps the enclosed area constant. The flows are geometrically intrinsic to the curve, and exactly satisfy all the basic requirements of scale-space representations. In the case of the Euclidean heat flow for example, it is completely local as well. The same approach is used to define length preserving geometric flows. The geometric scalespaces are implemented using an efficient numerical algorithm.

## Keywords

Heat Flow Curve Evolution Planar Curf Initial Curve Euclidean Case## References

- 1.L. Alvarez, F. Guichard, P. L. Lions, and J. M. Morel, Axioms and fundamental equations of image processing, to appear in
*Arch. for Rational Mechanics*.Google Scholar - 2.L. Alvarez, P. L. Lions, and J. M. Morel, Image selective smoothing and edge detection by nonlinear diffusion,
*SIAM J. Numer. Anal.***29**, pp. 845–866, 1992.Google Scholar - 3.S. Angenent, Parabolic equations for curves on surfaces, Part II. Intersections, blow-up, and generalized solutions,
*Annals of Mathematics***133**, pp. 171–215, 1991.Google Scholar - 4.S. Angenent, G. Sapiro, and A. Tannenbaum, On the affine heat equation for nonconvex curves,
*Technical Report MIT — LIDS*, January 1994.Google Scholar - 5.J. Babaud, A. P. Witkin, M. Baudin, and R. O. Duda, Uniqueness of the Gaussian kernel for scale-space filtering,
*IEEE-PAMI***8**, pp. 26–33, 1986.Google Scholar - 6.W. Blaschke,
*Vorlesungen über Differentialgeometrie II*, Verlag Von Julius Springer, Berlin, 1923.Google Scholar - 7.C. L. Epstein and M. Gage, The curve shortening flow, in
*Wave Motion: Theory, Modeling, and Computation*, A. Chorin and A. Majda (Ed.), Springer-Verlag, New York, 1987.Google Scholar - 8.L. M. J. Florack, B. M. ter Haar Romeny, J. J. Koenderink, and M. A. Viergever, Scale and the differential structure of images,
*Image and Vision Comp.***10**, pp. 376–388, 1992.Google Scholar - 9.M. Gage, On an area-preserving evolution equation for plane curves,
*Contemporary Mathematics***51**, pp. 51–62, 1986.Google Scholar - 10.M. Gage and R. S. Hamilton, The heat equation shrinking convex plane curves,
*J. Differential Geometry***23**, pp. 69–96, 1986.Google Scholar - 11.M. Grayson, The heat equation shrinks embedded plane curves to round points,
*J. Differential Geometry***26**, pp. 285–314, 1987.Google Scholar - 12.B. K. P. Horn and E. J. Weldon, Jr., Filtering closed curves,
*IEEE-PAMI***8**, pp. 665–668, 1986.Google Scholar - 13.B. B. Kimia, A. Tannenbaum, and S. W. Zucker, Shapes, shocks, and deformations, I, to appear in
*International Journal of Compute Vision*.Google Scholar - 14.J. J. Koenderink, The structure of images,
*Biological Cybernetics***50**, pp. 363–370, 1984.Google Scholar - 15.T. Lindeberg and J. O. Eklundh, On the computation of a scale-space primal sketch,
*Journal of Visual Comm. and Image Rep.***2**, pp. 55–78, 1991.Google Scholar - 16.D. G. Lowe, Organization of smooth image curves at multiple scales,
*International Journal of Computer Vision***3**, pp. 119–130, 1989.Google Scholar - 17.F. Mokhatarian and A. Mackworth, A theory of multiscale, curvature-based shape representation for planar curves,
*IEEE-PAMI***14**, pp. 789–805, 1992.Google Scholar - 18.J. Oliensis, Local reproducible smoothing without shrinkage,
*IEEE-PAMI***15**, pp. 307–312, 1993.Google Scholar - 19.P. J. Olver, G. Sapiro, and A. Tannenbaum, Differential invariant signatures and flows in computer vision: A symmetry group approach,
*Technical Report MIT — LIDS*, December 1993. Also in*Geometry Driven Diffusion*, B. ter har Romeny Ed., 1994.Google Scholar - 20.S. J. Osher and J. A. Sethian, Fronts propagation with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations,
*Journal of Computational Physics***79**, pp. 12–49, 1988.Google Scholar - 21.P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion,
*IEEE-PAMI***12**, pp. 629–639, 1990.Google Scholar - 22.J. Rubinstein and P. Sternberg, Nonlocal reaction-diffusion equations and nucleation,
*IMA Journal of Applied Mathematics***48**pp. 249–264, 1992.Google Scholar - 23.G. Sapiro, R. Kimmel, D. Shaked, B. B. Kimia, and A. M. Bruckstein, Implementing continuous-scale morphology via curve evolution,
*Pattern Recognition***26**:**9**, pp. 1363–1372, 1993.Google Scholar - 24.G. Sapiro and A. Tannenbaum, On affine plane curve evolution, February 1992, to appear in
*Journal of Functional Analysis*.Google Scholar - 25.G. Sapiro and A. Tannenbaum, Affine invariant scale-space,
*International Journal of Computer Vision***11**:**1**, pp. 25–44, 1993.Google Scholar - 26.G. Sapiro and A. Tannenbaum, Image smoothing based on an affine invariant flow,
*Proc. of Conf.on Information Sciences and Systems*, Johns Hopkins University, March 1993.Google Scholar - 27.G. Sapiro and A. Tannenbaum, On invariant curve evolution and image analysis,
*Indiana University Mathematics Journal***42**:**3**, 1993.Google Scholar - 28.G. Sapiro and A. Tannenbaum, Area and length preserving geometric invariant scale-spaces,
*Technical Report MIT — LIDS***2200**, September 1993.Google Scholar - 29.M. Spivak,
*A Comprehensive Introduction to Differential Geometry*, Publish or Perish Inc, Berkeley, California, 1979.Google Scholar - 30.A. P. Witkin, Scale-space filtering,
*Int. Joint. Conf. Artificial Intelligence*, pp. 1019–1021, 1983.Google Scholar - 31.A. L. Yuille and T. A. Poggio, Scaling theorems for zero crossings,
*IEEE-PAMI***8**, pp. 15–25, 1986.Google Scholar