Synchronous image restoration

  • Laurent Younes
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 801)


We analyse a class of random fields invariant by stochastic synchronous updating of all sites, subject to a generalized reversibility assumption. We give a formal definition and properties of the model, study the problem of posterior simulation, parameter estimation, and then present experimental results in image restoration.


Random Field Marginal Distribution Image Restoration Vertical Edge Horizontal Edge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. J. Besag (1974): Spatial Interaction and the Statistical Analysis of Lattice Systems. J. of Roy. Stat. Soc. B-36 pp 192–236.Google Scholar
  2. D.A. Dawson (1975): Synchronous and asynchronous reversible Markov systems Canad. Math. Bull. 17 633–649.Google Scholar
  3. D. Geman (1991):Random Fields and Inverse Problems in Imaging, In Proceedings of the Ecole d'été de Saint-Flour, Lecture Notes in Mathematics, Springer Verlag, New York.Google Scholar
  4. D. Geman and S. Geman (1984): Stochastic Relaxation, Gibbs Distribution and Bayesian Restoration of Images IEEE TPAMI. Vol PAMI-6 pp 721–741.Google Scholar
  5. O. Koslov and N. Vasilyev (1980): Reversible Markov chains with local interactions. In Multicomponent Random Systems, R.L. Dobrushin and Ya. G. Sinai Editors. (Dekker New York). 415–469.Google Scholar
  6. L. Younes (1993): Synchronous Random Fields and Image restoration (preprint).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Laurent Younes
    • 1
  1. 1.Ecole Normale Supérieure de CachanCMLA-DIAMCachan Cedex

Personalised recommendations