Advertisement

On ideal non-perfect secret sharing schemes

  • Pascal Paillier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1361)

Abstract

This paper first extends the result of Blakley and Kabatianski

Keywords

Secret Sharing Rank Function Access Structure Secret Sharing Scheme Visual Cryptography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Benaloh and J. Leichter, Generalized secret sharing and monotone functions, LNCS 403, Advances in Cryptology, Proceedings of Crypto'88, Springer Verlag, pp. 27–36, 1990.Google Scholar
  2. [2]
    G. Blakley, Safeguarding cryptographic keys, Proceedings of AFIPS 1979 National Computer Conference, vol. 48, 1979, pp. 313–317.Google Scholar
  3. [3]
    G. Blakley and G. Kabatianski, On general perfect secret sharing schemes, LNCS 963, Advances in Cryptology, Proceedings of Crypto'95, Springer Verlag, pp. 367–371, 1995Google Scholar
  4. [4]
    E. Brickell and D. Davenport, On the classification of ideal secret sharing schemes, Journal of Cryptology, vol. 4, 1991, pp. 123–134.Google Scholar
  5. [5]
    L. Csirmaz, The size of a share must be large, LNCS 950, Advances in Cryptology, Proceedings of Eurocrypt'94, Springer Verlag, pp. 13–22, 1994.Google Scholar
  6. [6]
    Y. Desmedt, G. Di Crescenzo and M. Burmester, Multiplicative non-abelian sharing schemes and their applications to threshold cryptography, LNCS 917, Advances in Cryptology, Proceedings of Asiacrypt'94, Springer Verlag, PP. 21–32,1994.Google Scholar
  7. [7]
    S. Droste, New results on visual cryptography, LNCS 1109, Advances in Cryptology, Proceedings of Crypto'96, Springer Verlag, pp. 401–415,1996.Google Scholar
  8. [8]
    W. Jackson, K. Martin and C. O'Keefe, On sharing many secrets, LNCS 917, Advances in Cryptology, Proceedings of Asiacrypt'94, Springer Verlag, pp. 42–54, 1994.Google Scholar
  9. [9]
    M. Itoh, A. Saito and T. Nishizeki, Secret sharing scheme realizing general access structure, Proceedings of IEEE Globecom'87, Tokyo, pp. 99–102, 1987.Google Scholar
  10. [10]
    E. Karnin, J. Green and M. Hellman, On secret sharing systems, IEEE Trans. Information Theory, vol. IT-29, no. 1, pp. 35–41, 1983.CrossRefGoogle Scholar
  11. [11]
    K. Kurosawa, K. Okada, K. Sakano, W. Ogata and S. Tsujii, Nonperfect secret sharing schemes and matroids, LNCS 765, Advances in Cryptology, Proceedings of Eurocrypt'93, Springer Verlag, p. 126–141.Google Scholar
  12. [12]
    K. Okada and K. Kurosawa, Lower bound on the size of shares of nonperfect secret sharing schemes, LNCS 917, Advances in Cryptology, Proceedings of Asiacrypt'94, Springer-Verlag, pp. 33–41, Dec. 1994.Google Scholar
  13. [13]
    A. Shamir, How to share a secret, Communications of the ACM, vol. 22, n.11, pp. 612–613, Nov. 1979.CrossRefGoogle Scholar
  14. [14]
    D. Stinson, An explication of secret sharing schemes, Designs, Codes and Cryptography, vol. 2, pp. 357–390, 1992.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Pascal Paillier
    • 1
  1. 1.Cryptography DepartmentGemplusSarcelles cedexFrance

Personalised recommendations