The gradient hypothesis and other models of carrier-mediated active transport

  • R. K. Crane
Part of the Reviews of Physiology, Biochemistry and Pharmacology book series (volume 78)


Active Transport Membrane Vesicle Amino Acid Transport Sugar Transport Energy Transduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alvarado, F.: Hypothesis for the interaction of phlorizin and phloretin with membrane carriers for sugars. Biochim. biophys. Acta (Amst.) 135, 483–495 (1967)Google Scholar
  2. Alvarado, F.: Sodium-driven transport: a reevaluation of the sodium-gradient hypothesis. In: Intestinal Ion Transport. Robinson, J.W.L. (ed.). Medical and Technical Publishing Co. Lancaster: 1976Google Scholar
  3. Alvarado, F., Crane, R.K.: Phlorizin as a competitive inhibitor of the active transport of sugars by hamster small intestine, in vitro. Biochim. biophys. Acta (Amst.) 56, 170–172 (1962)Google Scholar
  4. Armstrong, W. McD., Byrd, B.J., Hamang, P.M.: The Na+ gradient and D-galactose accumulation in epithelial cells of bullfrog small intestine. Biochim. biophys. Acta, (Amst.) 33, 237–241 (1973)Google Scholar
  5. Aronson, P.S., Sacktor, B.: The Na+ gradient-dependent transport of D-glucose in renal brush border membranes. J. biol. Chem. 250, 6032–6039 (1975)Google Scholar
  6. Barany, E., Sperber, E.: Absorption of glucose against a concentration gradient by the small intestine of the rabbit. Scand. Arch. Physiol. 81, 290–299 (1939)Google Scholar
  7. Barnes, E.M., Jr., Kaback, H.R.: β-galactoside transport in bacterial membrane preparations: energy coupling via membrane-bound D-lactic dehydrogenase. Proc. nat. Acad. Sci. (Wash.) 66, 1190–1198(1970)Google Scholar
  8. Barry, R.J.C., Dikstein, S., Matthews, J., Smyth, D.H., Wright, E.M.: Electrical potentials associated with intestinal sugar transfer. J. Physiol. (Lond.) 171, 316–338 (1964)Google Scholar
  9. Barry, R.J.C., Matthews, J., Smyth, D.H., Wright, E.M.: Potential difference and intestinal transport of solutes and water. J. Physiol. (Lond.) 161, 17–18P (1961)Google Scholar
  10. Beck, J.C., Sacktor, B.: Energetics of the Na+-dependent transport of D-glucose in renal brush border membrane vesicles. J. biol. Chem. 250, 8674–8680 (1975)Google Scholar
  11. Bihler, I., Crane, R.K.: Studies on the mechanism of intestinal absorption of sugars. V. The influence of several cations and anions on the active transport of sugars, in vitro, by various preparations of hamster small intestine. Biochim. biophys. Acta (Amst.) 59, 78–93 (1962)Google Scholar
  12. Bihler, I., Hawkins, K.A., Crane, R.K.: Studies on the mechanism of intestinal absorption of sugars. VI. The specificity and other properties of Na+-dependent entrance of sugars into intestinal tissue under anaerobic conditions, in vitro. Biochim. biophys. Acta. (Amst.) 59, 94–102 (1962).Google Scholar
  13. Boos, W.: Bacterial Transport. Ann. Rev. Biochem. 43, 123–146 (1974)Google Scholar
  14. Bosackova, J.: Sodium ion stimulation and potassium ion inhibition of intestinal active sugar transport. Fed. Proc. 22, 416 (1963)Google Scholar
  15. Bosackova, J., Crane, R.K.: Studies on the mechanism of intestinal absorption of sugars. IX. Intracellular sodium concentrations and active sugar transport by hamster small intestine in vitro. Biochim.biophys. Acta (Amst.) 102, 436–441 (1965)Google Scholar
  16. Bretscher, M.S.: A major protein which spans the human erythrocyte membrane. J. molec. 59, 351–357 (1971)Google Scholar
  17. Busse, D., Elsas, L.J., Rosenberg, L.E.: Uptake of D-glucose by renal tubule membranes. J. biol. Chem. 247, 1188–1193 (1972)Google Scholar
  18. Caspary, W.F., Stevenson, N.R., Crane, R.K.: Evidence for an intermediate step in carrier-mediated sugar translocation across the brush border membrane of hamster small intestine. Biochim. biophys. Acta (Amst.) 193, 168–178 (1969)Google Scholar
  19. Christensen, H.N.: Reactive sites and biological transport. Advanc. Protein Chem. 15, 239–314 (1960)Google Scholar
  20. Christensen, H.N.: Some special kinetic problems of transport. Advanc. Enzymol. 36, 1–20 (1969)Google Scholar
  21. Christensen, H.N.: Linked ion and amino acid transport. In: Membranes and Ion Transport. Bittar, E.E. (ed.), Vol. I, pp. 365–395. London: Wiley-Interscience 1970Google Scholar
  22. Christensen, H.N., Cespedes, C., Handlogten, M.E., Ronquist, G.: Energization of amino acid transport studied for the Ehrlich ascites tumor cells. Biochim. biophys. Acta (Amst.) 300, 487–522 (1973)Google Scholar
  23. Christensen, H.N., Cespedes, C., Handlogten, M.E., Ronquist, G.: Modified transport substrates as probes for intramembrane gradients. Ann. N.Y. Acad. Sci. 227, 355–379 (1974)Google Scholar
  24. Christensen, H.N., Handlogten, M.E.: A cycle of deprotonation and reprotonation energizing amino-acid transport? Proc. nat. Acad. Sci. (Wash.) 72, 23–27 (1975)Google Scholar
  25. Christensen, H.N., Riggs, T.R.: Concentrative uptake of amino acids by the Ehrlich mouse ascites carcinoma cell. J. biol. Chem. 194, 57–68 (1952)Google Scholar
  26. Clarkson, T.W., Cross, A.C., Toole, S.: Dependence on substrate of the electrical potential across the isolated gut. Nature (Lond.) 191, 501–502 (1961)Google Scholar
  27. Clausen, T., Elbrink, J., Dahl-Hansen, A.B.: The relationship between the transport of glucose and cations across cell membranes in isolated tissue. IX. The role of cellular calcium in the activation of the glucose transport system in rat soleus muscle. Biochim. biophys. Acta (Amst.) 375, 1292–1308(1975)Google Scholar
  28. Cockburn, M., Earnshaw, P., Eddy, A.A.: The stoicheiometry of the absorption of protons with phosphate and L-glutamate by yeasts of the genus Saccharomyces. Biochem. J. 146, 705–712 (1975)Google Scholar
  29. Cohen, G.N., Monod, J.: Bacterial permeases. Bact. Rev. 21, 169–194 (1957)Google Scholar
  30. Colombini, M., Johnstone, R.M.: Na+-dependent amino acid transport in plasma membrane vesicles from Ehrlich ascites cells. J. Membrane Biol. 15, 261–276 (1974a)Google Scholar
  31. Colombini, M., Johnstone, R.M.: Na+-gradient-stimulated AIB Transport in membrane vesicles from Ehrlich ascites cells. J. Membrane Biol. 18, 315–334 (1974b)Google Scholar
  32. Colowick, S.P., Womack, F.C.: Binding of diffusible molecules by macromolecules: Rapid measurement by rate of dialysis. J. biol. Chem. 244, 744–779 (1969)Google Scholar
  33. Cori, C.F.: The fate of sugar in the animal body. I. The rate of absorption of hexoses and pentoses from the intestinal tract. J. biol. Chem. 66, 691–715 (1925)Google Scholar
  34. Cort, J.H., Kleinzeller, A.: The effect of denervation, pituitrin and varied cation concentration gradients on the transport of cations and water in kidney slices. J. Physiol. (Lond.) 133, 287–300 (1956)Google Scholar
  35. Crane, R.K.: Intestinal Absorption of Sugars. Physiol. Rev. 40, 789–825 (1960)Google Scholar
  36. Crane, R.K.: Hypothesis of mechanism of intestinal active transport of sugars. Fed. Proc. 21, 891–895 (1962)Google Scholar
  37. Crane, R.K.: Uphill outflow of sugar from intestinal epithelial cells induced by reversal of the Na+ gradient: its significance for the mechanism of Na+-dependent active transport. Biochem. biophys. Res. Commun. 17, 481–485 (1964)Google Scholar
  38. Crane, R.K.: Na+-dependent transport in the intestine and other animal tissues. Fed. Proc. 24, 1000–1006 (1965)Google Scholar
  39. Crane, R.K.: Gradient coupling and the membrane transport of water-soluble compounds: A general biological mechanism? In: Protides of the Biological Fluids, Sect. A. Membranes. III. Transport, pp. 227–235. Amsterdam: Elsevier Publishing Co. 1967Google Scholar
  40. Crane, R.K.: The Physiology of the intestinal absorption of sugars. In: Physiological Effects of Food Carbohydrates. ACS Symposium Series, No. 15, pp. 1–19 (1975)Google Scholar
  41. Crane, R.K.: Digestion and Absorption: Water soluble organics. In: Gastrointestinal Physiology. MTP International Review of Science, Chap. 11 (In press)Google Scholar
  42. Crane, R.K., Caspary, W.: Evidence for an Intermediate step in sugar translocation across the brush border membrane. In: Intestinal Transport of Electrolytes, Amino Acids and Sugars. Armstrong, W. McD. et al. (ed.), pp. 130–143. Springfield Ill: Charles C Thomas 1971Google Scholar
  43. Crane, R.K., Field, R.A., Cori, C.F.: Studies on tissue permeability. I. The penetration of sugars into the Ehrlich ascites tumor cell. J. biol. Chem. 222, 649–662 (1957)Google Scholar
  44. Crane, R.K., Forstner, G., Eichholz, A.: Studies of the mechanism of the intestinal absorption of sugars. X. An effect of Na+ concentration on the apparent Michaelis constants for intestinal sugar transport, in vitro. Biochim. biophys. Acta (Amst.) 109, 467–477 (1965)Google Scholar
  45. Crane, R.K., Krane, S.M.: On the mechanism of intestinal absorption of sugars. Biochim biophys. Acta (Amst.) 20, 568–569 (1956)Google Scholar
  46. Crane, R.K., Krane, S.M.: Studies on the mechanism of the intestinal active transport of sugars. Biochim. biophys. Acta (Amst.) 31, 397–401 (1959)Google Scholar
  47. Crane, R.K., Malathi, P., Preiser, H.: (1976a) Transport properties of the brush border membrane: Reconstitution. Presented at FEBS Symposium on the Biochemistry of Membrane Transport, Zürich, July 18–23, 1976Google Scholar
  48. Crane, R.K., Malathi, P., Preiser, H.: Reconstitution of Na+-dependent glucose transport in liposome vesicles with Triton X-100 extract of hamster intestinal brush border membranes. Biochem. biophys. Res. Commun. (1976b) 71, 1010–1016 (1976)Google Scholar
  49. Crane, R.K., Malathi, P., Preiser, H.: Reconstitution of Na+-dependent glucose transport in liposome vesicles with Triton-100 extract of rabbit kidney tubular brush border membranes. FEBS Letters (1976c) 67, 214–216 (1976)Google Scholar
  50. Crane, R.K., Menard, D., Preiser, H., Cerda, J.J.: The molecular basis of brush border membrane disease. In: Membranes and Disease. Bolis, L., Hoffman, J.F., Leaf, A. (eds.), pp. 229–241. New York: Raven Press 1976dGoogle Scholar
  51. Crane, R.K., Miller, D., Bihler, I.: The restrictions on the possible mechanism of intestinal active transport of sugars. In: Membrane Transport and Metabolism. Kotyk, A. (ed.), pp. 439–449. Prague: Czechoslovak Acad. of Sci. Press 1961Google Scholar
  52. Csaky, T.Z.: Significance of sodium ions in active intestinal transport of nonelectrolytes. Amer. J. Physiol. 201, 999–1001 (1961)Google Scholar
  53. Csaky, T.Z., Hartzog, H.G. III, Fernald, G.W.: Effect of digitalis on active intestinal sugar transport. Amer. J. Physiol. 200, 459–460 (1961)Google Scholar
  54. Csaky, T.Z., Prachuabmoh, K., Eiseman, B., Ho, P.M.: The effect of digitalis on the renal tubular transport of glucose in normal and in heartless dogs. J. Pharmacol. exp. Ther. 150, 275–278 (1965)Google Scholar
  55. Csaky, T.Z., Rigor, B.M.: A concentrative mechanism for sugars in the chlorioid plexus. Life Sci. 3, 931–936 (1964)Google Scholar
  56. Csaky, T.Z., Thale, M.: Effect of ionic environment on the intestinal sugar transport. J. Physiol. (Lond.) 151, 59–65 (1960)Google Scholar
  57. Curran, P.F.: Na, Cl, and water transport by rat ileum in vitro. J. gen. Physiol. 43, 1137–1148 (1960)Google Scholar
  58. Curran, P.F., Schultz, S.G., Chez, R.A., Fuisz, R.E.: Kinetic relations of the Na-amino acid interaction at the mucosal border in intestine. J. gen. Physiol. 50, 1261–1286 (1967)Google Scholar
  59. Danielli, J.F.: Morphological and molecular aspects of active transport. Symp. Soc. exp. Biol. (N.Y.) 8, 502–516 (1954)Google Scholar
  60. Davson, H., Reiner, J.M.: Ionic permeability: an enzyme-like factor concerned in the migration of sodium through the cat erythrocyte membrane. J. cell. comp. Physiol. 20, 325–342 (1942)Google Scholar
  61. Drabkin, D.L.: Hyperglycemia, glycosuria and dephosphorylation: The role of phosphatases. Proc. Amer. Diab. Assoc. 8, 171–212 (1948)Google Scholar
  62. Eavenson, E., Christensen, H.N.: Transport systems for neutral amino acids in the pigeon erythrocyte. J. biol. Chem. 242, 5386–5396 (1967)Google Scholar
  63. Eddy, A.A.: A net gain of sodium ions and a net loss of potassium ions accompanying the uptake of glycine by mouse ascites-tumour cells in the presence of sodium cyanide. Biochem. J. 108, 195–206 (1968a)Google Scholar
  64. Eddy, A.A.: The effects of varying the cellular and extracellular concentrations of sodium and potassium ions on the uptake of glycine by mouse ascites-tumour cells in the presence and absence of sodium cyanide. Biochem. J. 108, 489–498 (1968b)Google Scholar
  65. Eddy, A.A., Backen, K., Watson, G.: The concentration of amino acids by yeast cells depleted of adenosine triphosphate. Biochem. J. 120, 853–858 (1970a)Google Scholar
  66. Eddy, A.A., Hogg, M.C.: Further observations on the inhibitory effect of extracellular potassium ions on glycine uptake by mouse ascites-tumour cells. Biochem. J. 114, 807–814 (1969)Google Scholar
  67. Eddy, A.A., Indge, K.J., Backen, K., Nowack, J.A.: Interactions between potassium ions and glycine transport in the yeast Saccharomyces carlsbergensis. Biochem. J. 120, 845–852 (1970b)Google Scholar
  68. Eddy, A.A., Mulcahy, M.F., Thomson, P.J.: The effects of sodium ions and potassium ions on glycine uptake by mouse ascites-tumour cells in the presence and absence of selected metabolic inhibitors. Biochem. J. 103, 863–876 (1967)Google Scholar
  69. Eilam, Y.: Two-carrier models for mediated transport. I. Theoretical analysis of several two-carrier models. Biochim. biophys. Acta (Amst.) 401, 349–363 (1975)Google Scholar
  70. Elbrink, J., Bihler, I.: Membrane transport: Its relation to cellular metabolic rates. Science 188, 1177–1184 (1975)Google Scholar
  71. Evers, J., Murer, H., Kinne, R.: Phenylalanine uptake in isolated renal brush border vesicles. Biochim. biophys. Acta (Amst.) 426, 598–615 (1976)Google Scholar
  72. Flagg, J.L., Wilson, T.H.: Galactoside accumulation by Escherichia coli, driven by a pH gradient. J. Bact. 125, 1235–1236 (1976)Google Scholar
  73. Fleckenstein, A.: Über den primären Energiespeicher der Muskelkontraktion. Pflügers Arch. ges. Physiol. 250, 643–666 (1948)Google Scholar
  74. Fox, M., Thier, S., Rosenberg, L., Segal, S.: Ionic requirements for amino acid transport in the rat kidney cortex slice. I. Influence of extracellular ions. Biochim. biophys. Acta (Amst.) 79, 167–176 (1964)Google Scholar
  75. Gale, E.F.: The assimilation of amino-acids by bacteria. I. The passage of certain amino-acids across the cell wall and their concentration in the internal environment of Streptococcus faecalis. J. gen. Microbiol. 1, 53–76 (1947)Google Scholar
  76. Geck, P., Heinz, E.: Coupling in secondary transport. Effect of electrical potentials on the kinetics of ion linked co-transport. Biochim. biophys. Acta (Amst.) 443, 49–53 (1976)Google Scholar
  77. Geck, P., Heinz, E., Pfeiffer, B.: Evidence against direct coupling between amino acid transport and ATP hydrolysis. Biochim. biophys. Acta (Amst.) 339, 419–425 (1974)Google Scholar
  78. Ginsburg, H., Ram, D.: Zero-trans and equilibrium-exchange efflux and infinite-trans uptake of galactose by human erythrocytes. Biochim. biophys. Acta (Amst.) 382, 369–376 (1975)Google Scholar
  79. Ginsburg, H., Stein, W.D.: Zero-trans and infinite-cis uptake of galactose in human erythrocytes. Biochim. biophys. Acta (Amst.) 382, 353–368 (1975)Google Scholar
  80. Glynn, I.M., Karlish, S.J.D.: The sodium pump. Ann. Rev. Physiol. 37, 13–55 (1975)Google Scholar
  81. Goldner, A., Schultz, S.G., Curran, P.F.: Sodium and sugar fluxes across the mucosal border of rabbit ileum. J. gen. Physiol. 53, 362–383 (1969)Google Scholar
  82. Goldschmidt, S.: On the mechanism of absorption from the intestine. Physiol. Rev. 1, 421–453 (1921)Google Scholar
  83. Guzman-Barron, E.S.: Mechanisms of carbohydrate metabolism Advanc. Enzymol. 3, 149–189 (1943)Google Scholar
  84. Hamburger, H.J.: Weitere Untersuchungen über die Permeabilität der Glomerulusmembran für stereoisomere Zucker mit besonderer Berücksichtigung von Galactose. Biochem. Z. 128, 185–206 (1922)Google Scholar
  85. Hamilton, W.A.: Energy coupling in microbiological transfer. Advanc. Microbiol. Physiol. 12, 1–53 (1975)Google Scholar
  86. Hansen, O.: The influence of monvalent cations and Ca2+ on — Strophanthin binding to (Na++K+) — activated ATPase. In: Properties and functions of (Na++K+) activated adenosinetriphosphatase. Ann. N.Y. Acad. Sci. 242, 635–645 (1974)Google Scholar
  87. Harold, F.M.: Conservation and transformation of energy by bacterial membranes. Bact. Rev. 36, 172–230 (1972)Google Scholar
  88. Harold, F.M.: Chemiosmotic interpretation of active transport in bacteria. Ann. N.Y. Acad. Sci. 227,297–311 (1974)Google Scholar
  89. Harris, E.J.: Transport and Accumulation in Biological Systems, p. 60. London: Butterworth 1972Google Scholar
  90. Heinz, E.: Kinetic studies on the “influx” of glycine-1-C14 into the Ehrlich mouse ascites carcinoma cell. J. biol. Chem. 211, 781–790 (1954)Google Scholar
  91. Heinz, E.: Coupling and energy transfer in active amino acid transport. In: Current Topics in Membranes and Transport. Bronner, F., Kleinzeller, A. (eds.), Vol. V, pp. 137–159. New York: Academic Press 1974Google Scholar
  92. Heinz, E., Geck, P.: The efficiency of energetic coupling between Na+ flow and amino acid transport in Ehrlich cells. A revised assessment. Biochim. biophys. Acta (Amst.) 339, 426–431 (1974)Google Scholar
  93. Heinz, E., Geck, P., Pietrzyk, C.: Driving forces of amino acid transport in animal cells. Ann. N.Y. Acad. Sci. 264, 428–441 (1975)Google Scholar
  94. Heinz, E., Geck, P., Wilbrandt, W.: Coupling in secondary active transport. Activation of transport by co-transport and/or counter-transport with the fluxes of other solutes. Biochim. biophys. Acta (Amst.) 255, 442–461 (1972)Google Scholar
  95. Heinz, E., Walsh, P.M.: Exchange diffusion, transport and intercellular level of amino acids in Ehrlich carcinoma cells. J. biol. Chem. 233, 1488–1493 (1958)Google Scholar
  96. Hirata, H., Altendorf, K., Harold, F.M.: Energy coupling in membrane vesicles of Escherichia coli. I. Accumulation of metabolites in response to an electrical potential. J. biol. Chem. 249, 2939–2945 (1974a)Google Scholar
  97. Hirata, H., Kosmakos, F.C., Brodie, A.F.: Active transport of proline in membrane preparations from Mycobacterium phlei J. biol. Chem. 249, 6965–6970 (1974b)Google Scholar
  98. Ho, M.K., Guidotti, G.: A membrane protein from human erythrocytes involved in anion exchange. J. biol. Chem. 250, 675–683 (1975)Google Scholar
  99. Höber, R.: Über resporption im Dünndarm. Pflügers Arch. ges. Physiol. 74, 246–271 (1899)Google Scholar
  100. Höber, R.: Über die Ausscheidung von Zuckern durch die isolierte Froschniere. Pflügers Arch. ges. Physiol. 233, 181–198 (1933)Google Scholar
  101. Höber, R., Höber, J.: Experiments on the absorption of organic solutes in the small intestine of rats. J. cell. comp. Physiol. 10, 401–422 (1937)Google Scholar
  102. Honegger, P., and Semenza, G.: Multiplicity of carriers for free glucalogues in hamster small intestine. Biochim. biophys. Acta (Amst.) 318, 390–410 (1973)Google Scholar
  103. Hopfer, U., Nelson, K., Perrotto, J., Isselbacher, K.J.: Glucose transport in isolated brush border membrane from rat small intestine. J. biol. Chem. 248, 25–32 (1973)Google Scholar
  104. Horecker, B.L., Osborn, M.J., McLellan, W.L., Avigad, G., Asensio, C.: The role of bacterial permeases in metabolism. In: Membrane Transport and Metabolism. Kleinzeller, A., Kotyk, A. (eds.), pp. 378–387. Academic Press 1961Google Scholar
  105. Inui, Y., Christensen, H.N.: Discrimination of single transport systems.: The Na+-sensitive transport of neutral amino acids in the Ehrlich cell. J. gen. Physiol. 50, 203–224 (1966)Google Scholar
  106. Jacquez, J.A.: Models of ion and substrate cotransport and the effect of the membrane potential. Math. Biosci. 13, 71–93 (1972)Google Scholar
  107. Jacquez, J.A.: Sodium dependence of maximum flux, JM, and Km of amino acid transport in Ehrlich ascites cells. Biochim. biophys. Acta (Amst.) 318, 411–425 (1973)Google Scholar
  108. Jacquez, J.A.: One-way fluxes of α-aminoisobutyric acid in Ehrlich ascites tumor cells: trans effects and effects of sodium and potassium. J. gen. Physiol. 65, 57–83 (1975)Google Scholar
  109. Jacquez, J.A., Schafer, J.A.: Na+ and K+ electrochemical potential gradients and the transport of α-aminoisobutyric acid in Ehrlich ascites tumor cells. Biochim. biophys. Acta (Amst.) 193, 368–383 (1969)Google Scholar
  110. Johnston, M.M., Diven, W.F.: An integrated rate equation for determining initial velocities. J. theoret. Biol. 25, 331–338 (1969)Google Scholar
  111. Johnstone, R.M.: Role of ATP on the initial rate of amino acid uptake in Ehrlich ascites cells. Biochim. biophys. Acta (Amst.) 356, 319–330 (1974)Google Scholar
  112. Kaback, H.R.: Uptake of amino acids by “Ghosts” of mutant strains of E. coli. Fed. Proc. 19, p. 130 (1960)Google Scholar
  113. Kaback, H.R., Barnes, E.M., Jr.: Mechanisms of active transport in isolated membrane vesicles: II. The mechanism of energy coupling between d-lactic dehydrogenase and β-galactoside transport in membrane preparations from Escherichia coli. J. biol. Chem. 246, 5523–5531 (1971)Google Scholar
  114. Kaback, H.R., Reeves, J.P., Short, S.A., Lombardi, F.J.: Mechanisms of active transport in isolated bacterial membrane vesicles. XVIII. The mechanism of action of carbonylcyanide m-chlorophenylhydrazone. Arch. Biochem. Biophys. 160, 215–222 (1974)Google Scholar
  115. Kaback, H.R., Stadtman, E.R.: Proline uptake by an isolated cytoplasmic membrane preparation of Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 55, 920–927 (1966)Google Scholar
  116. Kalckar, H.M.: Phosphorylation in kidney tissue. Enzymologia 2, 47–52 (1937)Google Scholar
  117. Kalckar, H.M.: The nature of energetic coupling in biological synthesis. Chem. Rev. 28, 71–178 (1941)Google Scholar
  118. Karlin, A.: The acetylcholine receptor: progress report. Life Sci. 14, 1385–1415 (1974)Google Scholar
  119. Kasahara, M., Hinkel, P.C.: Reconstruction of D-glucose transport catalyzed by a protein fraction from human erythrocytes in sonicated liposomes. Proc. nat. Acad. Sci. (Wash.) 73, 396–400 (1976)Google Scholar
  120. Kashket, E.R., Wilson, T.H.: Proton-coupled accumulation of galactoside in Streptococcus lactis 7962. Proc. nat. Acad. Sci. (Wash.) 70, 2866–2869 (1973)Google Scholar
  121. Kepes, A.: Etudes cinetiques sur la galactoside-permease d'Escherichia coli. Biochim. biophys. Acta (Amst.) 40, 7–84 (1960)Google Scholar
  122. Kepes, A.: Galactoside peremease of Escherichia Coli. In: Current Topics in Membrane and Transport. Bronner, F. and Kleinzeller, A. (eds.), Vol. 1, p. 101–134. New York: Academic Press 1970Google Scholar
  123. Kimmich, G.A.: Active Sugar accumulation by isolated intestinal epithelial cells. A new model for sodium-dependent metabolite transport. Biochemistry 19, 3669–3677 (1970)Google Scholar
  124. Kimmich, G.A.: Coupling between Na+ and sugar transport in small intestine. Biochim. biophys. Acta (Amst.) 300, 31–78 (1973)Google Scholar
  125. Kinne, R., Murer, H., Kinne-Saffran, E., Thees, M., Sachs, G.: Sugar transport by renal plasma membrane vesicles. Characterization of the systems in the brush border microvilli and basal-lateral plasma membranes. J. Membrane Biol. 21, 375–395 (1975)Google Scholar
  126. Kleinzeller, A.: Active sugar transport in renal cortex cells: The electrolyte requirement. Biochim. biophys. Acta (Amst.) 211, 277–292 (1970)Google Scholar
  127. Kleinzeller, A., Kotyk, A.: Eds. Membrane Transport and Metabolism. New York: Academic Press 1961aGoogle Scholar
  128. Kleinzeller, A., Kotyk, A.: Cations and transport of galactose in kidney-cortex slices. Biochim. biophys. Acta (Amst.) 54, 367–369 (1961b)Google Scholar
  129. Kletzien, R.F., Perdue, J.F.: Sugar transport in chick embryo fibroblasts: I. A functional change in the plasma membrane associated with the rate of cell growth. J. biol. Chem. 249, 3366–3374 (1974a)Google Scholar
  130. Kletzien, R.F., Perdue, J.F.: Sugar transport in chick embryo fibroblasts. II. Alterations in transport following transformation by a temperature sensitive mutant of the rous sarcoma virus. J. biol. Chem. 249, 3375–3382 (1974b)Google Scholar
  131. Koch, A.L.: The role of permease in transport. Biochim. biophys. Acta (Amst.) 79, 177–200 (1964)Google Scholar
  132. Koefoed-Johnsen, V., Ussing, H.H.: The nature of the frog skin potential. Acta physiol. scand. 42, 298–308 (1958)Google Scholar
  133. Komor, E., Tanner, W.: The hexose-proton symport system of Chlorella vulgaris: specificity, stoichio-metry and energetics of sugar-induced proton uptake. Europ. J. Biochem. 44, 219–223 (1974a)Google Scholar
  134. Komor, E., Tanner, W.: The hexose-proton cotransport system of Chlorella: pH dependent change in Km values and translocation constants of the uptake system. J. gen. Physiol. 64, 568–581 (1974b)Google Scholar
  135. Koopman, W., Schultz, S.G.: The effect of sugars and amino acids on mucosal Na+ and K+ concentrations in rabbit ileum. Biochim. biophys. Acta (Amst.) 173, 338–340 (1969)Google Scholar
  136. Krane, S.M., Crane, R.K.: The accumulation of D-galactose against a concentration gradient by slices of rabbit kidney cortex. J. biol. Chem. 234, 211–216 (1959)Google Scholar
  137. Krebs, H. A.: The intermediary stages in the biological oxidation of carbohydrate. Advanc. Enzymol. 3, 191–252 (1943)Google Scholar
  138. Kromphardt, H., Grobecker, H., Ring, K., Heinz, E.: Über den Einfluß von Alkali-Ionen auf den Glycintransport in Ehrlichascites-Tumorzellen. Biochim. biophys. Acta (Amst.) 74, 549–551 (1963)Google Scholar
  139. Lee, Chin O, Armstrong, W. McD.: Activities of sodium and potassium ions in epithelial cells of small intestine. Science 175, 1261–1264 (1972)Google Scholar
  140. Lee, H-J., Wilson, I.B.: Enzymic parameters: measurement of V and Km. Biochim. biophys. Acta (Amst.) 242, 519–522 (1971)Google Scholar
  141. Lee, J.W., Beygu-Farber, S., Vidaver, G.A.: Glycine transport by membrane vesicles from pigeon red cells. Biochim. biophys. Acta (Amst.) 298, 446–459 (1973)Google Scholar
  142. Le Fevre, P.G.: A model for erythrocyte sugar transport based on substrate-conditioned “introversion” of binding sites. J. Membrane Biol. 11, 1–19 (1973)Google Scholar
  143. Le Fevre, P.G.: The present state of the carrier hypothesis. In: Current Topics in Membranes and Transport. Bonner, F. and Kleinzeller, A. (eds.), Vol. XII, pp. 109–215. New York: Academic Press 1975Google Scholar
  144. Le Fevre, P.G.: A comparison of recent suggestions for the functional organization of red-cell sugar-transport sites based on kinetic observations. Ann. N.Y. Acad. Sci. 264, 398–413 (1975b)Google Scholar
  145. Le Fevre, P.G., Davies, R.I.: Active transport into the human erythrocyte: evidence from comparative kinetics and competition among monosaccharides. J. gen. Physiol. 34, 515–524 (1951)Google Scholar
  146. Lipmann, F.: Metabolic generation and utilization of phosphate bond energy. Advanc. Enzymol. 1, 99–162 (1941)Google Scholar
  147. Lombardi, F.J., Reeves, J.P., Kaback, H.R.: Mechanisms of active transport in isolated bacterial membrane vesicles. XIII. Valinomycin-induced rubidium transport. J. biol. Chem. 248, 3551–3565 (1973)Google Scholar
  148. Lundsgaard, E.: Effect of phlorizin in the isolated kidney and isolated liver. Skand. Archa Physiol. 72, 265 (1935)Google Scholar
  149. Lundegardh, H.: Investigations as to the absorption and accumulation of inorganic ions. Ann. Agric. Coll. Sweden 8, 234–395 (1940)Google Scholar
  150. Lyon, I., Crane, R.K.: Studies on transmural potentials in vitro in relation to intestinal absorption. I. Apparent michaelis constants for Na+-dependent sugar transport. Biochim. biophys. Acta. (Amst.) 112, 278–291 (1966)Google Scholar
  151. Malathi, P., Crane, R.K.: Spatial relationship between intestinal disaccharidases and the active transport system for sugars. Biochim. biophys. Acta. (Amst.) 163, 275–277 (1968)Google Scholar
  152. McDougal, D.B., Jr., Little, K.D., Crane, R.K.: Studies on the mechanism of intestinal absorption of sugars. IV. Localization of galactose concentrations within the intestinal wall during active transport, in vitro. Biochim. biophys. Acta (Amst.) 45, 483–489 (1960)Google Scholar
  153. Mering, I., von: Über Diabetes mellitus. I. Z. klin. Med. 13, 405–423 (1888)Google Scholar
  154. Mering, I., von: Über Diabetes Meillitus. II. Z. klin. Med. 16, 431–446 (1889)Google Scholar
  155. Michaelson, D.M., Raftery, M.A.: Purified acetylcholine receptor: its reconstitution to a chemically excitable membrane. Proc. nat. Acad. Sci. (Wash.) 71, 4768–4772 (1974)Google Scholar
  156. Michaelson, D., Vandlen, R., Bode, J., Moody, T., Schmidt, J., Raftery, M.A.: Some molecular properties of an isolated acetylcholine receptor ion-translocation protein. Arch. Biochem. Biophys. 165, 796–804 (1974)Google Scholar
  157. Mitchell, P.: Transport of phosphate through an osmotic barrier. Symp. Soc. exp. Biol. (N.Y.) 8, 254–261 (1954)Google Scholar
  158. Mitchell, P.: A general theory of membrane transport from studies of bacteria. Nature (Lond.) 180, 134–136 (1957)Google Scholar
  159. Mitchell, P.: Structure and function in microorganisms. Biochem. Soc. Symp. 16, 73–94 (1959)Google Scholar
  160. Mitchell, P.: Biological transport phenomena and the spatially anisotropic characteristics of enzyme systems causing a vector component of metabolism. In: Membrane Transport and Metabolism. Kleinzeller, A. (ed.), pp. 22–34. New York: Academic Press 1961aGoogle Scholar
  161. Mitchell, P.: Approaches to the analysis of specific membrane transport. In: Biological Structure and Function. Goodwin, T.W. and Lindberg, O. (eds.), Vol. II, pp. 581–603. New York: Academic Press 1961bGoogle Scholar
  162. Mitchell, P.: Conduction of protons through the membranes of mitochondria and bacteria by uncouplers of oxidative phosphorylation. Biochem. J. 81, 24P (1961c)Google Scholar
  163. Mitchell, P.: Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature (Lond.) 191, 144–148 (1961d)Google Scholar
  164. Mitchell, P.: Molecular, group and electron translocation through natural membranes. Biochem. Soc. Symp. 22, 142–168 (1963)Google Scholar
  165. Mitchell, P.: Translocations through natural membranes. Advanc. Enzymol. 29, 33–87 (1967)Google Scholar
  166. Mitchell, P.: Reversible coupling between transport and chemical reactions. In: Membranes and Ion Transport. Bittar, E.E. (ed.), Vol. I, pp. 192–256. London: Wiley-Interscience 1970Google Scholar
  167. Mitchell, P.: Performance and conservation of osmotic work by proton-coupled solute porter systems. Bioenergetics 3, 63–91 (1973)Google Scholar
  168. Mitchell, P., Moyle, J.: Group-translocation: a consequence of enzyme-catalyzed group-transfer. Nature (Lond.) 182, 372–373 (1958)Google Scholar
  169. Morville, M., Reid, M., Eddy, A.A.: Amino acid absorption by mouse ascites-tumour cells depleted of both endogenous amino acids and adenosine triphosphate. Biochem. J. 134, 11–26 (1973)Google Scholar
  170. Murer, H., Hopfer, U.: Demonstration of electrogenic Na+-dependent D-glucose transport in intestinal brush border membranes. Proc. nat. Acad. Sci. (Wash.) 71, 484–488 (1974)Google Scholar
  171. Murer, H., Hopfer, U., Kinne-Saffran, E., Kinne, R.: Glucose transport in isolated brush border and lateral-basal plasma-membrane vesicles from intestinal epithelial cells. Biochim. biophys. Acta (Amst.) 345, 170–179 (1974)Google Scholar
  172. Murer, H., Hopfer, U., Kinne, R.: Sodium/proton antiport in brush-border membrane vesicles isolated from rat small intestine and kidney. Biochem. J. 154, 597–604 (1976)Google Scholar
  173. Naftalin, R.J.: A model for sugar transport across red cell membranes without carriers. Biochim. biophys. Acta (Amst.) 211, 65–78 (1970)Google Scholar
  174. Naftalin, R.J., Holman, G.D.: The effects of removal of sodium ions from the mucosal solution on sugar absorption by rabbit ileum. Biochim. biophys. Acta (Amst.) 419, 385–390 (1976)Google Scholar
  175. Nagano, J.: Zur Kenntniss der Resorption Einfacher, im besonderen stereoisomerer Zucker im Dimndarm. Pflügers Arch. ges. Physiol. 90, 389–404 (1902)Google Scholar
  176. Nakazawa, F.: Influence of phlorizin on intestinal absorption. J. exp. Med. Tohoku 3, 288–294 (1922)Google Scholar
  177. Nathans, D., Tapley, D.F., Ross, J.E.: Intestinal transport of amino acids studied in vitro with L-[131I] monoiodotyrosine Biochim. biophys. Acta (Amst.) 41, 271–282 (1960)Google Scholar
  178. Niven, D.F., Jeacocke, R.E., Hamilton, W.A.: The membrane potential as the driving force for the accumulation of lysine by Staphylococcus aureus. FEBS Letters 29, 248–252 (1973)Google Scholar
  179. Nordlie, R.C., Soodsma, J.F.: Phosphotransferase activities of kidney glucose 6-phosphatase. J. biol. Chem. 241, 1719–1724(1966)Google Scholar
  180. Orlowski, M., Meister, A.: The γ-glutamyl Cycle: A possible transport system for amino acids. Proc. nat. Acad. Sci. (Wash.) 67, 1248–1255 (1970)Google Scholar
  181. Osterhout, W.J.F.: How do electrolytes enter the cell? Proc. nat. Acad. Sci. (Wash.) 21, 125–132 (1935)Google Scholar
  182. Park, C.R., Post, R.L., Kalman, C.F., Wright, J.H. Jr., Johnson, L.H., Morgan, H.E.: The transport of glucose and other sugars across cell membranes and the effect of insulin. Ciba Fdn. Coll. Endocrin. 9, 240–265 (1956)Google Scholar
  183. Patel, L., Schuldiner, S., Kaback, H.R.: Reversible effects of chaotropic agents on the proton permeability of Escherichia coli membrane vesicles. Proc. nat. Acad. Sci. (Wash.) 72, 3387–3391 (1975)Google Scholar
  184. Patlak, C.S.: Contributions of the theory of active transport: II. the gate type non-carrier mechanism and generalizations concerning tracer flow, efficiency and measurement of energy expenditure. Bull. Math. Biophysics 19, 209–235 (1957)Google Scholar
  185. Pavlasova, E., Harold, F.M.: Energy coupling in the transport of β-galactosides by Escherichia Coli: effect of proton conductors. J. Bact. 98, 198–204 (1969)Google Scholar
  186. Pietrzyk, A., Heinz, E.: The sequestration of Na+, K+ and Cl in the cellular nucleus and its energetic consequences for the gradient hypotheis of amino acid transport in Ehrlich cells. Biochim. biophys. Acta (Amst.) 352, 397–411 (1974)Google Scholar
  187. Post, R.L., Sen, A.K., Rosenthal, A.S.: A phosphorylated intermediate in adenosine triphosphate-dependent sodium and potassium transport across kidney membranes. J. biol. Chem. 240, 1437–1445 (1965)Google Scholar
  188. Racker, E., Fisher, L.W.: Reconstitution of an ATP-dependent sodium pump with an ATPase from electric eel and pure phospholipids. Biochem. biophys. Res. Commun. 67, 1144–1150 (1975)Google Scholar
  189. Ramos, S., Schuldiner, S., Kaback, H.R.: The electrochemical gradient of protons and its relationship to active transport in Escherichia coli membrane vesicles. Proc. nat. Acad. Sci. (Wash.) (1976) (in press)Google Scholar
  190. Rang, H.P.: Acetylcholine receptors. Quart. Rev. Biophys. 7, 283–399 (1975)Google Scholar
  191. Reeves, J.P.: Transient pH changes during D-lactate oxidation by membrane vesicles. Biochem. biophys. Res. Commun. 45, 931–936 (1971)Google Scholar
  192. Reeves, J.P., Hong, Jen-Shiang, Kaback, H.R.: Reconstitution of D-lactate-dependent transport in membrane vesicles from a D-lactate dehydrogenase mutant of Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 70, 1917–1921 (1973)Google Scholar
  193. Reid, E.W.: IV. On intestinal absorption, especially on the absorption of serum, peptone and glucose. Phil. Trans. B, 192–211 (1900)Google Scholar
  194. Reid, E.W.: Intestinal absorption of solutions. J. Physiol. (Lond.) 28, 241–256 (1902)Google Scholar
  195. Rickenberg, H.W., Cohen, G.N., Buttin, G., Monod, J.: Galactoside permease in Escherichia coli. Ann. Inst. Pasteur 91, 829–857 (1956)Google Scholar
  196. Riggs, T.R., Walker, L.M., Christensen, H.N.: Potassium migration and amino acid transport. J. biol. Chem. 233, 1479–1484(1958)Google Scholar
  197. Riklis, E., Quastel, J.H.: Effects of cations of sugar absorption by isolated surviving guinea pig intestine. Canad. J. Biochem. 36, 347–362 (1958)Google Scholar
  198. Rose, R.C., Schultz, S.G.: Studies on the electrical potential profile across rabbit ileum. J. gen. Physiol. 57, 639–663 (1971)Google Scholar
  199. Roseman, S.: In: The Molecular Basis of Biological Transport. Woessner, J.F., and Huijing, F. (eds.), pp. 181–218. New York: Academic Press 1972Google Scholar
  200. Rosenberg, I.H., Coleman, A.L., Rosenberg, L.E.: The role of sodium ion in the transport of amino acids by the intestine. Biochim. biophys. Acta (Amst.) 102, 161–171 (1965)Google Scholar
  201. Rosenberg, L.E., Blair, A., Segal, S.: Transport of amino acids by slices of rat-kidney cortex. Biochim. biophys. Acta (Amst.) 54, 479–488 (1961)Google Scholar
  202. Rosenberg, Th.: On accumulation and active transport in biological systems. Acta chem. scand. 2, 14–33 (1948)Google Scholar
  203. Rosenberg, Th.: The concept and definition of active transport. Soc. exp. Biol. Symp. 8, 27–41 (1954)Google Scholar
  204. Rosenberg, Th., Wilbrandt, W.: Enzymatic processes in cell membrane penetration. Int. Rev. Cytol. 1, 65–92 (1952)Google Scholar
  205. Rosenberg, Th., Wilbrandt, W.: Uphill transport induced by counterflow. J. gen. Physiol. 41, 289–296 (1957)Google Scholar
  206. Rothstein, A., Cabantchik, Z.I., Knauf, P.: Mechanism of anion transport in red cells: role of membrane proteins. Fed. Proc. 35, 3–10 (1976)Google Scholar
  207. Rudnick, G., Kaback, H.R., Weil, R.: Photoinactivation of the β-galactoside transport system in Escherichia coli membrane vesicles with an impermeant Azidophenyl galactoside. J. biol. Chem. 250, 6847–6851 (1975)Google Scholar
  208. Sacktor, B.: Trehalase and the transport of glucose in the mammalian kidney and intestine. Proc. nat. Acad. Sci. (Wash.) 60, 1007–1014 (1968)Google Scholar
  209. Schafer, J.A.: An examination of the energetic adequacy of the ion gradient hypothesis for nonelectrolyte transport. In: Na-linked Transport of Organic Solutes. Heinz, E. (ed.), pp. 68–83. Berlin-Heidelberg-New York: Springer 1971Google Scholar
  210. Schafer, J.A., Heinz, E.: The effect of reversal of Na+ and K+ electrochemical potential gradients on the active transport of amino acids in Ehrlich ascites tumor cells. Biochim. biophys. Acta. (Amst.) 249, 15–33 (1971)Google Scholar
  211. Schafer, J.A., Jacquez, J.A.: Change in Na+ uptake during amino acid transport. Biochim. biophys. Acta (Amst.) 135, 1081–1083 (1967)Google Scholar
  212. Schuldiner, S., Kaback, H.R.: Membrane potential and active transport in membrane vesicles from Escherichia coli. Biochem. 14, 5451–5460 (1975)Google Scholar
  213. Schuldiner, S., Kung, H.-F., Kaback, H.R., Weil, R.: Differentiation between binding and transport of dansylgalactosides in Escherichia coli. J. biol. Chem. 250, 3679–3682 (1975a)Google Scholar
  214. Schuldiner, S., Spencer, R.D., Weber, G., Weil, R., Kaback, H.R.: Lifetime and rotational relaxation time of dansylgalactoside bound to the lac carrier protein. J. biol. Chem. 250, 8893–8896 (1975b)Google Scholar
  215. Schuldiner, S., Weiss, R., Kaback, H.R.: Energy-dependent binding of dansylgalactoside to the lac carrier protein: direct binding measurements. Proc. nat. Acad. Sci. (Wash.) 73, 109–112 (1976)Google Scholar
  216. Schulman, J.D., Goodman, S.I., Mace, J.W., Patrick, A.D., Tietze, F., Butler, E.J.: Glutathionuria: inborn error of metabolism due to tissue deficiency of gamma-glutamyl transpeptidase. Biochem. biophys. Res. Commun. 65, 68–74 (1975)Google Scholar
  217. Schultz, S.G., Curran, P.F.: Coupled transport of sodium and organic solutes. Physiol. Rev. 50, 637–717 (1970)Google Scholar
  218. Schultz, S.G., Curran, P.F., Chez, R.A., Fuisz, R.E.: Alanine and sodium fluxes across mucosal border of rabbit ileum. J. gen. Physiol. 50, 1241–1260 (1967)Google Scholar
  219. Schultz, S.G., Zalusky, R.: Ion transport in isolated rabbit ileum. I. Short-circuit current and Na fluxes. J. gen. Physiol. 47, 567–584 (1964a)Google Scholar
  220. Schultz, S.G., Zalusky, R.: Ion transport in isolated rabbit ileum. II. The interaction between active sodium and active sugar transport. J. gen. Physiol. 47, 1043–1059 (1964b)Google Scholar
  221. Seaston, A., Carr, G., Eddy, A.A.: The concentration of glycine by preparations of the yeast Saccharomyces carlsbergensis depleted of adenosine triphosphate.: Effects of proton gradients and uncoupling agents. Biochem. J. 154, 669–676 (1976)Google Scholar
  222. Segal, S., Rosenhagen, M.: The effect of extracellular sodium concentration on γ-methyl-D-glucose transport by rat kidney cortex slices. Biochim. biophys. Acta (Amst.) 332, 278–285 (1974)Google Scholar
  223. Shaw, T.I. (1954) Ph.D. Dissertation, Cambridge Press. Quoted by Glynn, I.M.J. Physiol. (Lond.) 134 (1956) 278Google Scholar
  224. Short, S.A., Kaback, H.R., Kohn, L.D.: D-lactate dehydrogenase binding in Escherichia coli dld-Membrane vesicles reconstituted for active transport. Proc. nat. Acad. Sci. (Wash.) 71, 1461–1465 (1974)Google Scholar
  225. Short, S.A., Kaback, H.R., Kohn, L.D.: Localization of D-lactate dehydrogenase in native and reconstituted Escherichia coli membrane vesicles. J. biol. Chem. 250, 4291–4296 (1975)Google Scholar
  226. Sigrist-Nelson, K., Murer, H., Hopfer, U.: Active alanine transport in isolated brush border membranes. J. biol. Chem. 250, 5674–5680 (1975)Google Scholar
  227. Simoni, R.D., Postma, P.W.: The energetics of bacterial active transport. Ann. Rev. Biochem. 44, 523–554 (1975)Google Scholar
  228. Singer, S.J.: The molecular organization of membranes. Ann. Rev. Biochem. 43, 805–833 (1974)Google Scholar
  229. Skou, Jens Chr.: The influence of some cations on an adenosine triphopshatase from peripheral nerves. Biochim. biophys. Acta (Amst.) 23, 394–401 (1957)Google Scholar
  230. Sols, A., Crane, R.K.: Substrate specificity of brain hexokinase. J. biol. Chem. 210, 581–595 (1954)Google Scholar
  231. Stein, W.D.: The movement of molecules across cell membranes. In: Theoretical and Experimental Biology, Vol. VI. New York: Academic Press 1967Google Scholar
  232. Stock, J., Roseman, S.: A sodium-dependent sugar co-transport system in bacteria. Biochem. biophys. Res. Commun 44, 132–138 (1971)Google Scholar
  233. Thier, S.O., Blair, A., Fox, M., Segal, S.: The effect of extracellular sodium concentration of the kinetics of α-aminoisobutyric acid transport in the rat kidney cortex slice. Biochim. biophys. Acta (Amst.) 135, 300–305 (1967)Google Scholar
  234. Tyson, C.H., Vande Zande, H., Green, D.E.: Phospholipids as ionophores. J. biol. Chem. 251, 1326–1332(1976)Google Scholar
  235. Ullrich, K.J.: Renal tubular mechanisms of organic solute transport. Kidney Intern. 9, 134–148 (1976)Google Scholar
  236. Ussing, H.H.: Interpretation of the exchange of radiosodium in isolated muscle. Nature (Lond.) 160, 262–263 (1947)Google Scholar
  237. Ussing, H.H.: The use of tracers in the study of active ion transport across animal membranes. Cold Spr. Harb. Symp. quant. Biol. 13, 93–200 (1948)Google Scholar
  238. Ussing, H.H.: The distinction by means of tracers between active transport and diffusion: The transfer of iodide across the isolated frog skin. Acta physiol. scand. 19, 43–56 (1949)Google Scholar
  239. Van Handel, E.: Do trehalose and trehalase function in renal glucose transport? Science 163, 1075–1076 (1969)Google Scholar
  240. Van Slyke, D.D., Meyer, G.M.: The fate of protein digestion products in the body. III. The absorption of amino acids from the blood by the tissues. J. biol. Chem. 16, 197–212 (1913)Google Scholar
  241. Verzar, F.: Probleme und Ergebnisse auf dem Gebiete der Darmresorption. Ergebn. Physiol. 32, 391–471 (1931)Google Scholar
  242. Vidaver, G.A.: Transport of glycine by pigeon red cells. Biochem. 3, 662–667 (1964a)Google Scholar
  243. Vidaver, G.A.: Glycine transport by hemolyzed and restored pigeon red cells. Biochemistry 3, 795–799 (1964b)Google Scholar
  244. Vidaver, G.A.: Mucate inhibition of glycine entry into pigeon red cells. Biochemistry 3, 799–803 (1964c)Google Scholar
  245. Vidaver, G.A.: Some tests of the hypothesis that the sodium-ion gradient furnishes the energy for glycine-active transport by pigeon red cells. Biochemistry 3, 803–808 (1964d)Google Scholar
  246. Vidaver, G.A., Shepherd, S.L.: Transport of glycine by hemolysed and restored pigeon red blood cells. J. biol. Chem. 243, 6140–6150 (1968)Google Scholar
  247. Walker, A.M., Hudson, C.L.: The reabsorption of glucose from the renal tubule in amphibia and the action of phlorhizin upon it. Amer. J. Physiol. 118, 130–143 (1937)Google Scholar
  248. Wearn, J.T., Richards, A.N.: Observations on the composition of glomerular urine, with particular reference to the problem of reabsorption in the renal tubules. Amer. J. Physiol. 71, 209–227 (1924)Google Scholar
  249. West, I.C.: Lactose transport coupled to proton movements in Escherichia coli. Biochem. biophys. Res. Commun 41, 655–661 (1970)Google Scholar
  250. West, I.C., Mitchell, P.: Stoicheiometry of lactose-proton symport across the plasma membrane of Escherichia coli. Biochem. J. 132, 587–592 (1973)Google Scholar
  251. Wheeler, K.P., Christensen, H.N.: Role of Na+ in the transport of Amino acids in rabbit red cells. 1 biol. Chem. 242, 1450–1457 (1967)Google Scholar
  252. Wheeler, K.P., Inui, Y., Hollenberg, P.F., Eavenson, E., Christensen, H.N.: Relation of amino and acid transport to sodium-ion concentration. Biochim. biophys. Acta (Amst.) 109, 620–622 (1965)Google Scholar
  253. White, H.L., Schmitt, F.O.: Site of reabsorption in the kidney tubule of necturus. Amer. J. Physiol. 76, 483–495 (1926)Google Scholar
  254. Widdas, W.F.: Inability of diffusion to account for placental glucose transfer in the sheep and consideration of the kinetics of a possible carrier transfer. J. Physiol. (Lond.) 118, 23–39 (1952)Google Scholar
  255. Wilbrandt, W.: Permeabilitätsprobleme. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 212, 9–31 (1950)Google Scholar
  256. Wilbrandt, W.: Secretion and transport of non-electrolytes. Soc. exp. Biol. Symp. 8, 136–164 (1954)Google Scholar
  257. Wilbrandt, W., Laszt, L.: Untersuchung über die Ursachen der selectiven glukoseresorption aus dem Darm. Biochem. 259, 398–417 (1933)Google Scholar
  258. Wilbrandt, W., Rosenberg, Th.: The concept of carrier transport corollaries in pharmacology. Pharmacol. Rev. 13, 109–183 (1961)Google Scholar
  259. Winkler, H.H., Wilson, T.H.: The role of energy coupling in the transport of β-Galactosides by Escherichia coli. J. biol. Chem. 241, 2200–2211 (1966)Google Scholar
  260. Wyssbrod, H.R., Scott, W.N., Brodsky, W.A., Schwartz, I.L.: Carrier-mediated transport processes. In: Handbook of Neurochemistry. Lajtha, A. (ed.), Vol. 5, Part B, pp. 683–819. New York: Plenum 1971Google Scholar
  261. Young, J.D., Ellory, J.C., Wright, P.C.: Evidence against the participation of the γ-glutamyltransferase-γ-glutamylcyclotransferase pathway in amino acid transport by rabbit erythrocytes. Biochem. J. 152, 713–715 (1975)Google Scholar

Copyright information

© Springer Verlag 1977

Authors and Affiliations

  • R. K. Crane

There are no affiliations available

Personalised recommendations