The notion of role in conceptual modeling

  • C. Reynaud
  • N. Aussenac-Gilles
  • P. Tchounikine
  • F. Trichet
Long Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1319)

Abstract

In this article we analyse the notion of knowledge role. First of all, we present how the relationship between problem solving methods and domain models is tackled in different approaches. We concentrate on how they cope with this issue in the knowledge engineering process. Secondly, we introduce several properties which can be used to analyse, characterise and define the notion of role. We evaluate and compare the works exposed previously following these dimensions. This analysis suggests some developments to better exploit the relationship between reasoning and domain knowledge. We present them in a last section.

Key words

Knowledge Modeling Knowledge Roles Objects of Reasoning Problem Solving Methods 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aussenac-Gilles N., “How to combine data abstraction and model refinement: a methodological contribution in Macao”. A future for Knowledge Acquisition, Proc. of EKAW94. Berlin: Springer Verlag. LNAI 867, pp.262–282.1994.Google Scholar
  2. Aussenac-Gilles N., Matta N., “Making the method of problem solving explicit with Macao: the Sisyphus case-study”. International Journal of Human Computer Studies. 40, pp. 193–219. 1994.CrossRefGoogle Scholar
  3. Beaubeau D., Aussenac N., Tchounikine P., “Mona au pays des roles”. Rapport IRIT/96-23-R, Juil. 96.Google Scholar
  4. Beys B., Benjamins V. R., Van Heijst, G., “Remedying the Reusability-Usability Trade-off for Problem Solving Methods”. Proc. of KAW'96, Gaines & Musen ed., Banff: SRDG Publications Univ., Nov. 1996.Google Scholar
  5. Bylander T., Chandrasekaran “Generic tasks in knowledge-based reasoning: the right level of abstraction for knowledge acquisition”. In B.R. Gaines & J. H. Boose, Eds. Knowledge Acquisition for Knowledge-Based Systems. Vol. 1, pp. 65–87. London: Academic Press. 1988.Google Scholar
  6. Causse K., “Heuristic control knowledge”. Knowledge Acquisition for Knowledge Based Systems. Proc. of EKAW'93. Aussenac N., Boy G., Gaines B., Linster M., Ganascia J.G., Kodratoff Y. Eds. LNAI 723. Heidelberg: Springer Verlag. pp. 183–199. 1993.Google Scholar
  7. Delouis I. Krivine J.P.. “LISA, un langage réflexif pour opérationaliser les moles d'expertise”. Revue d'Intelligence Artificielle. Volume 9:1. pp. 53–88. Paris: Hermès. 1995.Google Scholar
  8. Istenes Z., Tchounikine P., “Zola: a language to Operationalise Conceptual Models of Reasoning”. Journal of Computing and Information (Proc. of ICCI'96) 2:1, pp. 689–706, 1996.Google Scholar
  9. Leroux B., Laublet P., “Steps towards a Unified Approach to Knowledge Modelling”. Proc. of Vlth European Japanese Conf. on Information Modelling and Knowledge Bases. Amsterdam: IOS Press. 1995.Google Scholar
  10. Linster M., “Knowledge Acquisition Based on Explicit Methods of Problem Solving”. PhD Thesis, Univ. of Kaiserslautern. Feb. 1992.Google Scholar
  11. Marcus S. McDermott J., “SALT: a knowledge acquisition tool for propose and revise systems”. Artificial Intelligence, 39, pp. 1–37, 1989.CrossRefGoogle Scholar
  12. Matta N., “Méthodes de résolution de problèmes: leur explicitation et leur représentation dans Macao-IT. Thèse de l'Université P. Sabatier, Toulouse. Oct. 1995.Google Scholar
  13. Pierret-Golbreich C. Talon X., “TFL, an algebraic language to specify the dynamic behavior of Knowledge-Based Systems”. The Knowledge Engineering Review, Volume 11:3, pp. 253–280. 1996.Google Scholar
  14. Reynaud C., Tort F., “Using Explicit Ontologies to Create Problem Solving Methods”. International Journal of Human Computer Studies. 46, pp. 339–364. 1997.CrossRefGoogle Scholar
  15. Schreiber G., Wielinga B., Akkermans H., Van de Welde W., Anjewierden A., “CML: The CommonKADS Conceptual Modeling Language”. A future for Knowledge Acquisition. Steels L., Schreiber G., ] Van de Velde W., eds. LNAI n°867, pp. 1–25. Berlin: Springer Verlag. 1994.Google Scholar
  16. Swartout B., Gil Y., “Flexible knowledge acquisition through explicit representation of knowledge roles”. AAAI Spring Symp. Acquisition, learning and demonstration: automating tasks for users. Stanford (USA). March 1996.Google Scholar
  17. Van Harmelen F. Balder J., “(ML)2: A Formal language for KADS models of expertise”. Knowledge Acquisition, 4 (1), pp. 127–161, 1992. Special issue: ‘The KADS approach to knowledge engineering'.CrossRefGoogle Scholar
  18. Van Heijst G., Schreiber A., Wielinga B. “Roles are not classes: a reply to Nicola Guarino”. International Journal of Human Computer Studies. 46, pp. 311–318. March 1997.CrossRefGoogle Scholar
  19. Wielinga B., Schreiber G., Breuker J., “KADS: a Modeling Approach to Knowledge Engineering”. Knowledge Acquisition, 4(1). pp. 5–54, 1992. Special issue: ‘The KADS approach to knowledge engineering'.CrossRefGoogle Scholar
  20. Wielinga B.J. Van De Velde W. Schreiber G. Akkermans H., “Towards a unification of knowledge modelling approaches”. In David, J.-M., Krivine, J.-P., Simmons R., eds., Second Generation Expert Systems, Springer-Verlag. 1992.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • C. Reynaud
    • 1
  • N. Aussenac-Gilles
    • 2
  • P. Tchounikine
    • 3
  • F. Trichet
    • 3
  1. 1.LRI - Univ. de Paris-SudOrsay CedexFrance
  2. 2.IRIT - Univ. P. SabatierToulouse CedexFrance
  3. 3.IRIN - Univ. de NantesNantes cedex 3France

Personalised recommendations