Advertisement

An automatic calculator with penrose diagrams

  • J. M. Molinelli
  • J. M. Barja
  • A. Blanco
  • J. L. Fieire
2 Theory and Methods
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1333)

Abstract

In this paper a general model, that allows different kinds of diagrams that appears in several fields of Science and Engineering to be integrated under the same representation, is proposed, and a computer aided graphical calculus system, enabling to manipulate these graphical representations in a semiautomatic way, is presented.

Traditionally most of these diagrams have been used as an aid in the development of complex calculus, although the lack of a solid theoretical foundation for this kind of representation has prevent the existence of general tools.

Keywords

Tensor Product Tensor Category Reidemeister Movement Link Diagram Identity Morphism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [B]
    Burroni, A.: Higher Dimensonal Word Problem. Lecture Notes in Computer Science, Springer 530 (1991) 94–105Google Scholar
  2. [C]
    Caruncho, J. R.: Teoria de Triples. Alxebra 5, Dpto. Algebra y Fund. Univ. Santiago (1971)Google Scholar
  3. [EK]
    Eilenberg, S., Kelly, M.: A Generalization of the Functorial Calculus. J. Algebra 3 (1966) 366–375.CrossRefGoogle Scholar
  4. [FY]
    Freyd, P. J., Yetter, D. N.: Braided Compact Closed Categories with Applications to Low Dimensional Topology. Advances in Mathematics 77 (1989) 156–182.CrossRefGoogle Scholar
  5. [HL]
    Huet, G., Lansdorf, D. S.: On the Uniform Halting Problem for Term Rewriting Systems. Rapport Laboria 283 INRIA (1978)Google Scholar
  6. [JS1]
    Joyal, A., Street, R.: The Geometry of Tensor Calculus I. Advances in Mathematics 88 (1991) 55–112.CrossRefGoogle Scholar
  7. [JS2]
    Joyal, A., Street, R.: An Introduction to Tannaka Duality and Quantum Groups. Lecture Notes in Math., Springer 1488 (1991) 412–492.Google Scholar
  8. [KB]
    Knuth, D. E., Bendix, P. B.: Simple Word problems in universal algebras. J. Leech (Ed.) Computational Problems in Abstrect Algebra, Pergamon Press, Oxford (1970) 265–297.Google Scholar
  9. [Lf92]
    Lafont, Y.: Penrose diagrams and 2-dimensional rewriting. Applications of Categories in Computer Science (ed. M. P. Fourman, P. T. Johnstone, and A. M. Pitts), LMSLNS 177 Cambridge University Press (1992) 191–201.Google Scholar
  10. [Lfl93]
    Lafont, Y.: Ecuational Reasoning with 2-dimensional Diagrams Lecture Notes in Computer Science, Springer 909 (1993) 171–195.Google Scholar
  11. [L]
    Leroy, X.: The Objective Caml System, Release 1.03. Documentation and Users Manual. INRIA (1996).Google Scholar
  12. [Ml]
    MacLane, S.: Natural associativity and conmutativity. Rise Univ. Stud. 49 (1963) 28–46.Google Scholar
  13. [MIP]
    MacLane, S., Pare, R.: Coherence for bicategories and indexed categories. J. Pure Appl. Algebra 37 (1985) 59–80.CrossRefGoogle Scholar
  14. [Ma]
    Majid, S. Quantum and Braided-Lie algebras. Journal of Geometry and Physics 13 North Holland (1994) 307–356.CrossRefGoogle Scholar
  15. [O]
    Oesterhout, J. K.: Tcl and the Tk Toolkit. Addison-Wesley (1993).Google Scholar
  16. [PR]
    Pessaux, F., Rouaix, F.: The Camltk interface. Release for Tk4.0. Project Cristal. INRIA, Rocquencourt.Google Scholar
  17. [P]
    Penrose, R., Rindler, W.: Spinors and space-time, Vol 1: Two-spinor calculus and relativistic fields. Cambridge University Press (1986).Google Scholar
  18. [Po]
    Power, A. J.: A 2-Categorical Pasting Theorem. J. of Algebra 129 (1990) 439–445.CrossRefGoogle Scholar
  19. [R]
    Reidemeister, K.: Knot Theory. B.C.S. Associates (1983).Google Scholar
  20. [Sa]
    Sawing, S.: Links, Quantum Groups and TQTFS. Bulletin (New Series) of the American Mathematical Society 33 N. 4 (1996) 413–445.Google Scholar
  21. [Sh]
    Shum, M. C.: Tortile tensor categories. Journal of Pure and Applied Algebra 93 (1994) 57–110.CrossRefGoogle Scholar
  22. [TBB]
    Tamasia, R., Di Battista, G., Batini, C.: Automatic Graph Drawing and Readability of Diagrams. IEEE Transactions on Systems, Man, and Cybernetics, 18 N. 1 (1988) 61–79.Google Scholar
  23. [Tu]
    Turaev, V. G.: The Yang-Baxter equation and invariants of links. Inventiones Mathematicae 92 Springer Verlag (1988) 527–533.CrossRefGoogle Scholar
  24. [W]
    Welch, B.: Practical Programming in Tcl and Tk. Prentice-Hall (1995).Google Scholar
  25. [We]
    Wechler, W.: Universal Algebra for Computer Scientists. EATCS Monographs on Theoretical Computer Science. Springer-Verlag (1992).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • J. M. Molinelli
    • 1
  • J. M. Barja
    • 1
  • A. Blanco
    • 1
  • J. L. Fieire
    • 1
  1. 1.Dpt. of Computing. LFCIAUniversity of La CoruñaSpain

Personalised recommendations