Supercover of straight lines, planes and triangles

  • Eric Andres
  • Philippe Nehlig
  • Jean Françon
From Principles to Applications
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1347)


The Supercover of a Euclidean object is the set of the pixels or voxels intersected by the object. The Supercover of 2D lines and 2D triangles are defined analytically. Some geometric properties, localization, and generation algorithms are given. The same is done for 3D lines, planes, and 3D triangles.


Discrete 3D Modelling Discrete Lines Discrete Planes Discrete Polygons Supercover 


  1. [Andr92]
    E. Andres, Cercles discrets et Rotations discretes [Discrete Cercles and Discrete Rotations], Ph.D. Thesis, Université Louis Pasteur, Strasbourg (France). Dec. 1992 (in French).Google Scholar
  2. [AS95]
    E. Andres, and C. Sibata, Discrete hyperplanes in arbitrary dimensions. to be published in CVGIP-GMIP.Google Scholar
  3. [ASA96]
    E. Andres, C. Sibata, and R. Acharya, Supercover 3D Polygon, Proc. Int. Workshop on Discrete Geometry for Computer Imagery, LNCS, vol 1176, pp. 237–242.Google Scholar
  4. [ANF97]
    E. Andres, Ph. Nehlig, and J. Françon, Tunnel free Supercover 3D polygons and polyhedra, Eurographics'97, BUDAPEST, Hungary, Sept 4–8 (1997), Computer Graphics Forum (Blackwell Publishers), vol 16(3), Conference issue, pp. C3–C13.Google Scholar
  5. [Cohe95]
    D. Cohen and A. Kaufman. Fundamentals of surface voxelization. CVGIPGMIP, 57(6), Nov.95, pp.453–461.Google Scholar
  6. [Fra95a]
    J. Françon, Arithmetic planes and combinatorial manifolds, 5th International Conference Discrete Geometry in Computer Imagery, Clermont-Ferrand, 25–27 Sept. 1995, pp. 209–217.Google Scholar
  7. [Fra95b]
    J. Françon, Sur la topologie d'un plan arithmétique [About the topology of the arithmetical plane], Theor. Comp. Sc. 156, 1996, pp. 159–176 (in French).Google Scholar
  8. [FR95]
    O. Figueiredo, and J.-P. Reveillès, A contribution to 3D digital lines, 5th International Conference Discrete Geometry in Computer Imagery, Clermont-Ferrand. 25–27 Sept. 1995, pp. 187–198.Google Scholar
  9. [Reve91]
    J.-P. Reveillès, Géométrie Discrète, calcul en nombres entiers et algorithmique [Discrete Geometry, Integer Number Calculus, and Algorithmics], Thèse d'état. Université Louis Pasteur, Strasbourg (France), Dec. 1991 (in French).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Eric Andres
    • 1
  • Philippe Nehlig
    • 2
  • Jean Françon
    • 2
  1. 1.TUCS — Turku Centre for Computer ScienceTurkuFinland
  2. 2.Laboratoire des Sciences de l'Image, de l'Informatique et de la TélédétectionUniversité Louis PasteurStrasbourg CedexFrance

Personalised recommendations