Advertisement

A digital signature scheme based on random error-correcting codes

  • G. Kabatianskii
  • E. Krouk
  • B. Smeets
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1355)

Abstract

Over the past years there have been few attempts to construct digital signature schemes based on the intractability of the decoding of linear error-correcting codes. Unfortunately all these attempts failed. In this paper we suggest a new approach based on a seemingly unknown before fact that the set of correctable syndroms being nonlinear nevertheless contains a rather large linear subspace.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Xinmei, “Digital signature scheme based on error-correcting codes”, Electronic letters, 26 (13), 1990, pp. 898–899.Google Scholar
  2. 2.
    L. Harh and D.-C. Wang, “Cryptoanalysis and modification of digital signature scheme based on error-correcting codes”, Electronic letters, 28 (2), 1992, pp. 157–159.Google Scholar
  3. 3.
    M. Alabbadi and S.B. Wicker, “Cryptoanalysis of the Ham and Wang modification of the Xinmei digital signature scheme”, Electronic letters, 28 (18), 1992, pp. 1756–1758.Google Scholar
  4. 4.
    M. Alabbadi and S.B. Wicker, “Digital signature scheme based on error-correcting codes”, Proceedings 1993 IEEE International Symposium on Information Theory, San Antonio, USA, 1993, pp. 199.Google Scholar
  5. 5.
    M. Alabbadi and S.B. Wicker “Susceptibility of digital signature scheme based on error-correcting codes to universal forgery”, Proceedings 1994 IEEE International Symposium on Information Theory, Trondheim, Norway, 1994, pp. 494.Google Scholar
  6. 6.
    R.J. McEliece, A public-key cryptosystem based on algebraic coding theory, DSN Prog. Report, JPL, 1978, pp. 114-116.Google Scholar
  7. 7.
    H. Niederreiter, “Knapsack-type cryptosystems and algebraic coding theory”, Probl Control and Information Theory, 1986, pp. 157–166.Google Scholar
  8. 8.
    Y.X. Li, R.H. Deng and X.M. Wang. On the equivalence of McEliece's and Niederreiter's public-key cryptosystems, IEEE Transactions on Information Theory, 40(1), 1994, pp. 271–273.CrossRefGoogle Scholar
  9. 9.
    E.R. Berlekamp, R.J. McEliece, and H.C.A. van Tilborg, “On the inherent intractability of certain coding problems”, IEEE Transactions on Information Theory, Vol. 24, 1978, pp.384–386.CrossRefGoogle Scholar
  10. 10.
    V.M. Sidelnikov and S.O. Shestakov, “On insecurity of cryptosystem based on generalized Reed-Solomon codes”, Discrete Mathematics, Vol. 4, 1992, pp. 57–63.Google Scholar
  11. 11.
    Lehmer, Applied Combinatorial Mathematics.Google Scholar
  12. 12.
    S. Even, O. Goldreich, and S. Micali, “On-line/off-line digital signatures”, Journal of Cryptology, 9(1), 1996, pp. 35–67.CrossRefGoogle Scholar
  13. 13.
    F.J. MacWilliams and N.J.A. Sloane, The Theory of Error-Correcting Codes, Amsterdam: North-Holland, 1977.Google Scholar
  14. 14.
    J. Stern, A new identification scheme based on syndrome decoding, Proc. Crypto'93, D. Stinson (Ed.), Springer-Verlag, 1994, pp 13–21.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • G. Kabatianskii
    • 1
  • E. Krouk
    • 2
  • B. Smeets
    • 3
  1. 1.Institute of Problems of Information TransmissionRussian Academy of SciencesMoscowRussia
  2. 2.St Petersburg State Academy of Aerospace InstrumentationSt PetersburgRussia
  3. 3.Department of Infomation TechnologyLund UniversitySweden

Personalised recommendations