Advertisement

Construction of a family of factorizing codes

  • Clelia De Felice
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 182)

Keywords

Formal Power Series Minim Solution Empty Word Free Monoid Code Construction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Berstel, D. Perrin (1981), "Théorie des Codes", LITP — Université Paris VI et VII.Google Scholar
  2. [2]
    J. M. Boë (1978), "Sur les codes synchronisants coupants" in (A. de Luca, ed.) "Non Commutative Structures in Algebra and Geometric Combinatorics" (Arco Fe=lice, 1978) Quaderni della Ricerca Scientifica del C.N.R., no 109, 1981, p. 7–10.Google Scholar
  3. [3]
    J. M.Boë, (1979), "Sur les codes factorisants" Actes de la 7ème Ecole de Prin=temps d'Informatique Théorique, (Jougne 1979), D. Perrin ed., LITP (Paris), p. 1–8.Google Scholar
  4. [4]
    J. M. Boë(1978), "Une famille remarquable de codes indécomposables" in (Ausiel=lo and Böhm, ed.) Automata, languages and programming, Springer Verlag, 1978, p. 105–112.Google Scholar
  5. [5]
    C. De Felice, Construction de codes factorisants, to appear in Theor. Comp. Science.Google Scholar
  6. [6]
    C. Reutenauer (1983), Sulla fattorizzazione dei codici, Ricerche di Matematica, Vol. XXXII, fasc. 1°, p. 115–130.Google Scholar
  7. [7]
    M. Vincent (1983), "Construction de codesiindécomposables", to appear in R. A.I.R.O.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • Clelia De Felice
    • 1
    • 2
  1. 1.LITPParis
  2. 2.Institute of MathematicsUniversity of NaplesNaples

Personalised recommendations