Petri nets and algebraic calculi of processes

  • Cérard Boudol
  • Cérard Roucairol
  • Robert de Simone
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 182)

Abstract

We show that, as transition systems, Petri nets may be expressed by terms of a calculus of processes which is a variant of Milner's SCCS. We then prove that the class of labelled nets forms a subcalculus, thus an algebra, with juxtaposition, adding condition and labelling as primitive operations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. Austry, G. Boudol: "Algèbre de processus et synchronisation", Theoret. Comput. Sci. 30 (1984)Google Scholar
  2. [2]
    W. Brauer (editor): "Advanced course on general net theory of processes and systems", Hamburg 1979. Lecture Notes in Comput. Sci. 84 (Springer, Berlin, 1980)Google Scholar
  3. [3]
    G.W. Brams: "Réseaux de Petri: théorie et pratique", (Masson, Paris, 1983)Google Scholar
  4. [4]
    R.H. Campbell, P.E. Lauer: "Formal semantics for a class of high-level primitives for coordinating concurrent processes". Acta Informatica 5 (1975), 247–332Google Scholar
  5. [5]
    U. Goltz, A. Mycroft: "On the relationship of CCS and Petri Nets", ICALP 84, Lecture Notes in Comput. Sci. 172 (Springer, Berlin, 1984), 196–208Google Scholar
  6. [6]
    V.E. Kotov: "An algebra for parallelism based on Petri nets", MFCS 79, Lecture Notes in Comput. Sci. 64 (Springer, Berlin, 1979), 39–55Google Scholar
  7. [7]
    R. Milner: "Flowgraphs and flow algebras", JACM 26 (1979), 794–818Google Scholar
  8. [8]
    R. Milner: "A calculus of communicating systems", Lecture Notes in Comput. Sci., 92 (Springer, Berlin, 1980)Google Scholar
  9. [9]
    R. Milner: "On relating synchrony and asynchrony", Tech. Rept. CSR-75-80, Comput. Sci. Dept., Edinburgh Univ. 1980Google Scholar
  10. [10]
    R. Milner: "Four combinators for concurrency", 2nd ACM Symp. on Principles of Distributed Computing, Ottawa (1982)Google Scholar
  11. [11]
    R. Milner: "Calculi for synchrony and asynchrony", Theoret. Comput. Sci. 25 (1983), 267–310Google Scholar
  12. [12]
    J.L. Peterson: "Petri nets", Comput. Surveys 9 (1977), 223–252Google Scholar
  13. [13]
    G. Rozenberg, R. Verraedt: "Subset languages of Petri nets", Part I, Theoret. Comput. Sci. 26 (1983), 301–326Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Cérard Boudol
    • 1
  • Cérard Roucairol
    • 2
  • Robert de Simone
    • 3
  1. 1.INRIA, Sophia AntipolisValbonneFrance
  2. 2.LRI, Université Paris SudOrsayFrance
  3. 3.CMA-ENSMP, Sophia AntipolisValbonneFrance

Personalised recommendations