MODp-tests, almost independence and small probability spaces

Extended abstract
  • Claudia Bertram-Kretzberg
  • Hanno Lefmann
Probabilism
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1200)

Abstract

We consider approximations of probability distributions over ℤpn. We present an approach to estimate the quality of approximations towards the construction of small probability spaces which are used to derandomize algorithms. In contrast to results by Even et al. [13], our methods are simple, and for reasonably small p, we get smaller sample spaces. Our considerations are motivated by a problem which was mentioned in recent work of Azar et al. [5], namely, how to construct in time polynomial in n a good approximation to the joint probability distribution of i.i.d. random variables X1,...,Xn where each Xi has values in {0,1}. Our considerations improve on results in [5].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Alon, L. Babai and A. Itai, A Fast and Simple Randomized Parallel Algorithm for the Maximal Independent Set Problem, J. Alg. 7, 1985, 567–583.Google Scholar
  2. 2.
    N. Alon, J. Bruck, J. Naor, M. Naor and R. Roth, Construction of Asymptotically-Good Low-Rate Error-Correcting Codes Through Pseudo-Random Graphs, IEEE Trans. Inf. Th. 38, 1992, 509–516.CrossRefGoogle Scholar
  3. 3.
    N. Alon, O. Goldreich, J. Håstad and R. Peralta, Simple Constructions of Almost k-wise Independent Random Variables, Random Structures & Algorithms 3, 1992, 289–304. Addendum: Random Structures & Algorithms 4, 1993, 119–120.Google Scholar
  4. 4.
    N. Alon and J. Spencer, The Probabilistic Method, Wiley & Sons, New York, 1992.Google Scholar
  5. 5.
    Y. Azar, R. Motwani and J. Naor, Approximating Probability Distributions using Small Sample Spaces, preprint, 1995.Google Scholar
  6. 6.
    L. Babai, P. Frankl and J. Simon, Complexity Classes in Communication Complexity Theory, Proc. 27th FOCS, 1986, 337–347.Google Scholar
  7. 7.
    J. Beck and W. Chen, Irregularities of Distribution, Cambridge Univ. Press, 1987.Google Scholar
  8. 8.
    B. Berger and J. Rompel, Simulating (log n)c-wise Independence in NC, J. ACM 38, 1991, 1026–1046.CrossRefGoogle Scholar
  9. 9.
    C. Bertram-Kretzberg, TH-MOD p-circuits, preprint, 1996.Google Scholar
  10. 10.
    S. Chari, P. Rohatgi and A. Srinivasan, Improved Algorithms via Approximations of Probability Distributions, Proc. 26th STOC, 1996, 584–592.Google Scholar
  11. 11.
    F. R. K. Chung, R. L. Graham and R. M. Wilson, Quasi-Random Graphs, Combinatorica 9, 1989, 345–362.CrossRefGoogle Scholar
  12. 12.
    G. Even, Construction of Small Probability Spaces for Deterministic Simulation, M. Sc. thesis, Technion, Haifa, Israel, 1991.Google Scholar
  13. 13.
    G. Even, O. Goldreich, M. Luby, N. Nisan and B. Veličković, Approximations of General Independent Distributions, Proc. 24th STOC, 1992, 10–16.Google Scholar
  14. 14.
    J. Håstad, S. Phillips and S. Safra, A Well Characterized Approximation Problem, Inf. Proc. Lett. 47, 1993, 301–305.CrossRefGoogle Scholar
  15. 15.
    H. Karloff and Y. Mansour, On Construction of k-wise Independent Random Variables, Proc. 24th STOC, 1994, 564–573.Google Scholar
  16. 16.
    M. Krause and P. Pudlák, On the Computational Power of Depth-2 Circuits with Threshold Modulo Gates, Proc. 26th STOC, 1994, 48–57.Google Scholar
  17. 17.
    A. Lubotzky, R. Phillips and P. Sarnak, Ramanujan Graphs, Combinatorica 8, 1988, 261–277.CrossRefGoogle Scholar
  18. 18.
    R. Motwani, J. Naor and M. Naor, The Probabilistic Method Yields Deterministic Parallel Algorithms, J. Comp. Sys. Sci. 49, 1994, 478–516.CrossRefGoogle Scholar
  19. 19.
    J. Naor and M. Naor, Small Bias Probability Spaces: Efficient Constructions and Applications, SIAM J. Comp. 22, 1993, 838–856.CrossRefGoogle Scholar
  20. 20.
    M. Naor, L. J. Schulman and A. Srinivasan, Splitters and Near-Optimal Derandomization, Proc. 36th FOCS, 1995, 182–191.Google Scholar
  21. 21.
    R. Peralta, On the Randomness Complexity of Algorithms, CS Research Report TR 90-1, University of Wiskonsin, Milwaukee, 1990.Google Scholar
  22. 22.
    U. Vazirani, Randomness, Adversaries and Computation, PhD thesis, University of California, Berkeley, 1986.Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Claudia Bertram-Kretzberg
    • 1
  • Hanno Lefmann
    • 1
  1. 1.Lehrstuhl Informatik IIUniversität DortmundDortmundGermany

Personalised recommendations