The operators min and max on the polynomial hierarchy

  • Harald Hempel
  • Gerd Wechsung
Structural Complexity I
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1200)


Starting from Krentel's class OptP [Kre88] we define a general maximization operator max and a general minimization operator min for complexity classes and show that there are other interesting optimization classes beside OptP. We investigate the behavior of these operators on the polynomial hierarchy, in particular we study the inclusion structure of the classes max · P, max · NP, max · coNP, min · P, min · NP and min · coNP. Furthermore we prove some very powerful relations regarding the interaction of the operators max, min, U, Sig, C, ⊕, ∃ and ∀. This gives us a tool to show that the considered min and max classes are distinct under reasonable structural assumptions. Besides that, we are able to characterize the polynomial hierarchy uniformly by three operators.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BDG95]
    J.L. Balcázar, J. Díaz and J. Gabarró. Structural Complexity I. Springer Berlin-Heidelberg-New York, 2nd ed., 1995.Google Scholar
  2. [BDG90]
    J.L. Balcázar, J. Díaz and J. Gabarró. Structural Complexity II. Springer Berlin-Heidelberg-New York, 1990.Google Scholar
  3. [CT95]
    Z.-Z. Chen and S. Toda. The Complexity of Selecting Maximal Solutions. Information and Computation, 119(1):231–239, 1995.CrossRefGoogle Scholar
  4. [GKR95]
    W.I. Gasarch, M.W. Krentel and K.J. Rappoport. OptP as the Normal Behavior of NP-Complete Problems. Mathematical Systems Theory, 28:487–514, 1995.CrossRefGoogle Scholar
  5. [HV95]
    L. Hemaspaandra and H. Vollmer. The Satanic notations: Counting classes beyond # · P and other definitional adventures. SIGACT News, 26(1):2–13, 1995.CrossRefGoogle Scholar
  6. [Köb89]
    J. Köbler. Strukturelle Komplexität von Anzahlproblemen. PhD thesis, Universität Stuttgart, Fakultät für Informatik, Stuttgart, Germany, 1989.Google Scholar
  7. [KST89]
    J. Köbler, U. Schöning and J. Torán. On counting and approximation. Acta Informatica, 26:363–379, 1989.Google Scholar
  8. [Kre88]
    M.W. Krentel. The complexity of optimization problems. Journal of Computer and Systems Sciences, 36:490–509, 1988.CrossRefGoogle Scholar
  9. [Kre92]
    M.W. Krentel. Generalizations of OptP to the polynomial hierarchy. Theoretical Computer Science, 97:183–198. 1992.CrossRefGoogle Scholar
  10. [Ogi91]
    M. Ogiwara. Characterizing low levels of the polynomial-time hierarchy relative to C=P via metric turing machines. Technical Report C-101, Tokyo Institute of Technology, Department of Information Science, Tokyo, Japan, 1991.Google Scholar
  11. [OH93]
    M. Ogiwara and L. Hemachandra. A complexity theory for feasible closure properties. Journal of Computer and Systems Sciences, 46:295–325, 1993.CrossRefGoogle Scholar
  12. [Pap94]
    C. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.Google Scholar
  13. [PZ83]
    C. Papadimitriou and S. Zachos. Two remarks on the power of counting. Proceedings 6th GI Conference on Theoretical Computer Science, 269–276. Springer Verlag, Lecture Notes in Computer Science # 145, 1983.Google Scholar
  14. [Tod91]
    S. Toda. Computational Complexity of Counting Complexity Classes. PhD thesis, Tokyo Institute of Technology, Department of Computer Science, Tokyo, Japan, 1991.Google Scholar
  15. [Val79a]
    L.G. Valiant. The complexity of computing the permanent. Theoretical Computer Science, 8:189–201, 1979.CrossRefGoogle Scholar
  16. [Val79b]
    L.G. Valiant. The complexity of enumeration and reliability problems. SIAM Journal on Computing, 8(3):410–421, 1979.CrossRefGoogle Scholar
  17. [Vol94]
    H. Vollmer. Komplexitätsklassen von Funktionen. PhD thesis, Universität Würzburg, Institut für Informatik, Würzburg, Germany, 1994.Google Scholar
  18. [VW93]
    H. Vollmer and K.W. Wagner. The complexity of finding middle elements. International Journal of Foundations of Computer Science, 4:293–307. 1993.CrossRefGoogle Scholar
  19. [VW95]
    H. Vollmer and K.W. Wagner. Complexity Classes of Optimization Functions. Information and Computation, 120(2):198–219, 1995 CrossRefGoogle Scholar
  20. [Wag86]
    K.W. Wagner. Some observations on the connection between counting and recursion. Theoretical Computer Science, 47:131–147, 1986.CrossRefGoogle Scholar
  21. [Wag87]
    K.W. Wagner. More complicated questions about maxima and minima, and some closures of NP. Theoretical Computer Science, 51:53–80, 1987.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Harald Hempel
    • 1
  • Gerd Wechsung
    • 1
  1. 1.Institut für InformatikFriedrich-Schiller-Universität JenaJena

Personalised recommendations