Fast online multiplication of real numbers

  • Matthias Schröder
Algorithms II
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1200)

Abstract

We develop an online-algorithm for multiplication of real numbers which runs in time O(M(n)log(n)), where M denotes the Schönhage-Strassen-bound for integer multiplication which is defined by M(m)=m log(m) log log(m), and n refers to the output precision (1/2)n. Our computational model is based on Type-2-machines: The real numbers are given by infinite sequences of symbols which approximate the reals with increasing precision. While reading more and more digits of the input reals, an algorithm for a real function produces more and more precise approximations of the desired result. An algorithm M is called online, if for every n ∈ ℕ the input-precision, which M requires for producing the result with precision (1/2)n, is approximately the same as the topologically necessary precision.

Topics

Computable real analysis computational complexity online computations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BSS89]
    L. Blum, M. Shub, S. Smale: On a theory of computation and complexity over the real numbers, Bull. Amer. Math. Soc. 21, pp. 1–46 (1989)Google Scholar
  2. [DHM89]
    J. Duprat, Y. Herreros, J. M. Muller: Some results about on-line computation of functions, Proc. 9th IEEE Symposium on Computer Arithmetic, IEEE Computer Society Press, Los Alamitos, pp. 112–118 (1989)Google Scholar
  3. [FS74]
    M. Fischer, L. Stockmeyer: Fast On-line Integer Multiplication, Journal of Computer and System Sciences 9 (1974)Google Scholar
  4. [Ho90]
    H.J. Hoover: Feasible real functions and arithmetic circuits, SIAM Journal of Computing 19, pp. 182–204 (1990)CrossRefGoogle Scholar
  5. [Ko91]
    Ker-I Ko: Complexity Theory of Real Functions, Birkhäuser, Boston (1991)Google Scholar
  6. [La95]
    B. Landgraf: Schnelle beinahe Online-Multiplikation reeller Zahlen, Diplomarbeit, Fernuniversität Hagen (1995)Google Scholar
  7. [Mü86]
    N. Müller: Computational Complexity of Real Functions and Real Numbers, Informatik Berichte Nr. 59, Fernuniversität Hagen (1986)Google Scholar
  8. [PFM74]
    M. Paterson, M. Fischer, A. Meyer: An Improved Overlap Argument For On-Line Multiplication, SIAM-AMS Proceedings Volume 7 (1974)Google Scholar
  9. [PR89]
    M. Pour-El, J. Richards: Computability in Analysis and Physics, Springer-Verlag, Berlin, Heidelberg (1989)Google Scholar
  10. [SS71]
    A. Schönhage, V. Strassen: Schnelle Multiplikation großer Zahlen, Computing 7, (1971)Google Scholar
  11. [Sch95]
    M. Schröder: Topological Spaces Allowing Type 2 Complexity Theory, in: Workshop on Computability and Complexity in Analysis, Informatik Berichte Nr. 190, Fernuniversität Hagen (1995)Google Scholar
  12. [We91]
    K. Weihrauch: On the Complexity of Online Computations of Real Functions, Journal of Complexity 7, pp. 340–394 (1991)CrossRefGoogle Scholar
  13. [We87]
    K. Weihrauch: Computability, Springer-Verlag, Berlin, Heidelberg (1987)Google Scholar
  14. [We95a]
    K. Weihrauch: A Simple Introduction to Computable Analysis, Informatik Berichte Nr. 171, Fernuniversität Hagen (1995)Google Scholar
  15. [We95b]
    K. Weihrauch: A Foundation of Computable Analysis, in: EATCS Bulletin Nr. 57, pp. 167–182 (October 1995)Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Matthias Schröder
    • 1
  1. 1.Theoretische Informatik IFernUniversität HagenHagenGermany

Personalised recommendations