Advertisement

Packing schemes for gang scheduling

  • Dror G. Feitelson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1162)

Abstract

Jobs that do not require all processors in the system can be packed together for gang scheduling. We examine accounting traces from several parallel computers to show that indeed many jobs have small sizes and can be packed together. We then formulate a number of such packing algorithms, and evaluate their effectiveness using simulations based on our workload study. The results are that two algorithms are the best: either perform the mapping based on a buddy system of processors, or use migration to re-map the jobs more tightly whenever a job arrives or terminates. Other approaches, such as mapping to the least loaded PEs, proved to be counterproductive. The buddy system approach depends on the capability to gang-schedule jobs in multiple slots, if there is space. The migration algorithm is more robust, but is expected to suffer greatly due to the overhead of the migration itself. In either case fragmentation is not an issue, and utilization may top 90% with sufficiently high loads.

Keywords

Workload Model Packing Scheme Buddy System Gang Schedule Multiple Slot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Barak and A. Shiloh, “A distributed load-balancing policy for a multicomputer”. Software — Pract. & Exp. 15(9), pp. 901–913, Sep 1985.Google Scholar
  2. 2.
    J. M. Barton and N. Bitar, “A scalable multi-discipline, multiple-processor scheduling framework for IRIX”. In Job Scheduling Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph (eds.), pp. 45–69, Springer-Verlag, 1995. Lecture Notes in Computer Science Vol. 949.Google Scholar
  3. 3.
    S-H. Chiang, R. K. Mansharamani, and M. K. Vernon, “Use of application characteristics and limited preemption for run-to-completion parallel processor scheduling policies”. In SIGMETRICS Conf. Measurement & Modeling of Comput. Syst., pp. 33–44, May 1994.Google Scholar
  4. 4.
    E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson, “Approximation algorithms for bin-packing — an updated survey”. In Algorithm Design for Computer Systems Design, G. Ausiello, M. Lucertini, and P. Serafini (eds.), pp. 49–106, Springer-Verlag, 1984.Google Scholar
  5. 5.
    E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson, “Bin packing with divisible item sizes”. J. Complex. 3(4), pp. 406–428, Dec 1987.CrossRefGoogle Scholar
  6. 6.
    F. Douglis and J. Ousterhout, “Process migration in the Sprite operating system”. In 7th Intl. Conf. Distributed Comput. Syst., pp. 18–25, Sep 1987.Google Scholar
  7. 7.
    D. G. Feitelson, A Survey of Scheduling in Multiprogrammed Parallel Systems. Research Report RC 19790 (87657), IBM T. J. Watson Research Center, Oct 1994.Google Scholar
  8. 8.
    D. G. Feitelson and B. Nitzberg, “Job characteristics of a production parallel scientific workload on the NASA Ames iPSC/860”. In Job Scheduling Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph (eds.), pp. 337–360, Springer-Verlag, 1995. Lecture Notes in Computer Science Vol. 949.Google Scholar
  9. 9.
    D. G. Feitelson and L. Rudolph, “Distributed hierarchical control for parallel processing”. Computer 23(5), pp. 65–77, May 1990.CrossRefGoogle Scholar
  10. 10.
    D. G. Feitelson and L. Rudolph, “Evaluation of design choices for gang scheduling using distributed hierarchical control”. J. Parallel & Distributed Comput., 1996. to appear.Google Scholar
  11. 11.
    D. G. Feitelson and L. Rudolph, “Parallel job scheduling: issues and approaches”. In Job Scheduling Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph (eds.), pp. 1–18, Springer-Verlag, 1995. Lecture Notes in Computer Science Vol. 949.Google Scholar
  12. 12.
    D. G. Feitelson and L. Rudolph, “Wasted resources in gang scheduling”. In 5th Jerusalem Conf. Information Technology, pp. 127–136, IEEE Computer Society Press, Oct 1990.Google Scholar
  13. 13.
    B. Gorda and R. Wolski, “Time sharing massively parallel machines”. In Intl. Conf. Parallel Processing, Aug 1995.Google Scholar
  14. 14.
    B. C. Gorda and E. D. Brooks III, Gang Scheduling a Parallel Machine. Technical Report UCRL-JC-107020, Lawrence Livermore National Laboratory, Dec 1991.Google Scholar
  15. 15.
    S. Hotovy, “Workload evolution on the Cornell Theory Center IBM SP2”. In Job Scheduling Strategies for Parallel Processing II, D. G. Feitelson and L. Rudolph (eds.), Springer-Verlag, 1996. Lecture Notes in Computer Science.Google Scholar
  16. 16.
    Intel Corp., iPSC/860 Multi-User Accounting, Control, and Scheduling Utilities Manual. Order number 312261-002, May 1992.Google Scholar
  17. 17.
    Intel Supercomputer Systems Division, Paragon User's Guide. Order number 312489-003, Jun 1994.Google Scholar
  18. 18.
    K. C. Knowlton, “A fast storage allocator”. Comm. ACM 8(10), pp. 623–625, Oct 1965.CrossRefGoogle Scholar
  19. 19.
    P. Krueger, T-H. Lai, and V. A. Radiya, “Processor allocation vs. job scheduling on hypercube computers”. In 11th Intl. Conf. Distributed Comput. Syst., pp. 394–401, May 1991.Google Scholar
  20. 20.
    S. T. Leutenegger and M. K. Vernon, “The performance of multiprogrammed multiprocessor scheduling policies”. In SIGMETRICS Conf. Measurement & Modeling of Comput. Syst., pp. 226–236, May 1990.Google Scholar
  21. 21.
    D. Lifka, “The ANL/IBM SP scheduling system”. In Job Scheduling Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph (eds.), pp. 295–303, Springer-Verlag, 1995. Lecture Notes in Computer Science Vol. 949.Google Scholar
  22. 22.
    M. H. MacDougall, Simulating Computer Systems: Techniques and Tools. MIT Press, 1987.Google Scholar
  23. 23.
    S. Majumdar, D. L. Eager, and R. B. Bunt, “Scheduling in multiprogrammed parallel systems”. In SIGMETRICS Conf. Measurement & Modeling of Comput. Syst., pp. 104–113, May 1988.Google Scholar
  24. 24.
    J. K. Ousterhout, “Scheduling techniques for concurrent systems”. In 3rd Intl. Conf. Distributed Comput. Syst., pp. 22–30, Oct 1982.Google Scholar
  25. 25.
    J. L. Peterson and T. A. Norman, “Buddy systems”. Comm. ACM 20(6), pp. 421–431, Jun 1977.CrossRefGoogle Scholar
  26. 26.
    D. L. Russell, “Internal fragmentation in a class of buddy systems”. SIAM J. Comput. 6(4), pp. 607–621, Dec 1977.CrossRefGoogle Scholar
  27. 27.
    T. Suzuoka, J. Subhlok, and T. Gross, Evaluating Job Scheduling Techniques for Highly Parallel Computers. Technical Report CMU-CS-95-149, School of Computer Science, Carnegie Mellon University, 1995.Google Scholar
  28. 28.
    Thinking Machines Corp., Connection Machine CM-5 Technical Summary. Nov 1992.Google Scholar
  29. 29.
    M. Wan, R. Moore, G. Kremenek, and K. Steube, “A batch scheduler for the Intel Paragon MPP system with a non-contiguous node allocation algorithm”. In Job Scheduling Strategies for Parallel Processing II, D. G. Feitelson and L. Rudolph (eds.), Springer-Verlag, 1996. Lecture Notes in Computer Science.Google Scholar
  30. 30.
    G. K. Zipf, Human Behavior and the Principle of Least Effort. Addison-Wesley, 1949.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Dror G. Feitelson
    • 1
  1. 1.Institute of Computer ScienceThe Hebrew UniversityJerusalemIsrael

Personalised recommendations