Upward drawings on planes and spheres

Extended abstract for Graph Drawing '95 20 – 22 September 1995
  • S. Mehdi Hashemi
  • Andrzej Kisielewicz
  • Ivan Rival
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1027)

Abstract

Although there is a linear time algorithm to decide whether an ordered set has an upward drawing on a surface topologically equivalent to a sphere, we shall prove that the decision problem whether an ordered set has an upward drawing on a sphere itself is NP-complete. To this end we explore the surface topology of ordered sets highlighting especially the role of their saddle points.

References

  1. K. A. Baker, P. C. Fishburn, and F. S. Roberts (1971) Partial orders of dimension 2, Networks (2), 11–28.Google Scholar
  2. G. di Battista, W.-P. Liu and I. Rival (1990) Bipartite graphs, upward drawings, and planarity, Inform. Proc. Letters 36, 317–322.CrossRefGoogle Scholar
  3. G. di Battista and R. Tamassia (1988) Algorithms for plane representations of acyclic digraphs. Theoretical Computer Science 61, 175–198.CrossRefGoogle Scholar
  4. J. Czyzowicz. A. Pelc and I. Rival (1990) Planar ordered sets of width two, Math. Slovaca 40 (4), 375–388.Google Scholar
  5. K. Ewacha, W. Li, and I. Rival (1991) Order, genus and diagram invariance, ORDER 8, 107–113.CrossRefGoogle Scholar
  6. S. Foldes, I. Rival and J. Urrutia, Light sources, obstructions, and spherical orders, Discrete Math. 102, 13–23.Google Scholar
  7. M. R. Garey and D. S. Johnson (1979) Computers and Intractability: A Guide to the Theory of NP-completeness. Freeman.Google Scholar
  8. A. Garg and R.Tamassia (1995) On the computational complexity of upward and rectilinear planarity testing, Lecture Notes in Computer Science (894) (eds. R. Tamassia and I. G. Tollis), pp. 286–297.Google Scholar
  9. A. Garg and R.Tamassia (1995) Upward planarity testing, ORDER (12(2)).Google Scholar
  10. S. Mehdi Hashemi and I. Rival (1994) Upward drawings to fit surfaces, in Orders, Algorithms, and Applications (ORDAL '94) (eds. V. Bouchitté and M. Morvan), Lecture Notes in Computer Science 831, Springer pp. 53–58.Google Scholar
  11. J. Hopcroft and R. E. Tarjan (1974) Efficient planarity testing, J. Ass. Comp. Mach. 21 (4), 549–568.Google Scholar
  12. M. D. Hutton and A. Lubiw (1991) Upward planar drawing of single source acyclic digraphs, Proc. 2nd A.C.M./ S.I.A.M. Symposium Discrete Appl. Math., pp. 203–211.Google Scholar
  13. D. Kelly (1987) Fundamentals of planar ordered sets, Discrete Math. 63, 197–216.CrossRefGoogle Scholar
  14. D. Kelly and I. Rival (1975) Planar lattices, Canad. J. Math. 27, 636–665.Google Scholar
  15. A. Kisielewicz and I. Rival (1993) Every triangle-free planar graph has a planar upward drawing, ORDER 10, 1–16.CrossRefGoogle Scholar
  16. A. Lempel, S. Even and I. Cederbaum (1967) An algorithm for planarity testing of graphs, in Theory of Graphs, International Symposium, Rome (1966) (P.Rosenstiehl ed.), Gordon and Breach, pp. 215–232.Google Scholar
  17. C. R. Platt (1976) Planar lattices and planar graphs, J. Comb. Th. Ser. B 21, 30–39.CrossRefGoogle Scholar
  18. K. Reuter and I. Rival (1991) Genus of orders and lattices, in Graph-Theoretic Concepts in Computer Science (R. Möhring ed.), Lect. Notes Comp. Sci. 484, pp. 260–275.Google Scholar
  19. I. Rival (1993) Reading, drawing, and order, in Algebras and Orders (I. G. Rosenberg ed.), Kluwer.Google Scholar
  20. C. Thomassen (1989) Planar acyclic oriented graphs, ORDER 5, 349–361.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • S. Mehdi Hashemi
    • 1
  • Andrzej Kisielewicz
    • 2
  • Ivan Rival
    • 3
  1. 1.Department of MathematicsUniversity of OttawaOttawaCanada
  2. 2.Mathematical InstituteUniversity of WroclawWroclawPoland
  3. 3.Department of Computer ScienceUniversity of OttawaOttawaCanada

Personalised recommendations