The botanical beauty of random binary trees

  • Luc Devroye
  • Paul Kruszewski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1027)


We present a simple mechanism for quickly rendering computer images of botanical trees based on random binary trees commonly found in computer science. That is, we visualize abstract binary trees as botanical ones. We generate random binary trees by splitting based upon the beta distribution, and obtain the standard binary search trees as a special case. We draw them in PostScript to resemble actual botanical trees found in nature. Through flexible parameterization and extensive randomization, we can produce a rich collection of images.

Keywords and phrases

Tree drawing tree simulation tree visualization beta distribution random binary trees PostScript 


  1. Adobe Systems Inc. (1985). PostScript Language Reference Manual. Reading, MA: Addison-Wesley.Google Scholar
  2. Alonso, L. and R. Schott (1995). Random Generation of Trees. Dordrecht, The Netherlands: Kluwer Academic Publishers.Google Scholar
  3. Anon, M. and T. Kunii (1984). Botantical tree image generation. IEEE Computer Graphics Applications 4, 10–34.Google Scholar
  4. Bloomenthal, J. (1985). Modeling the Mighty Maple. In Proceedings of SIGGRAPH'85, Computer Graphics, Volume 19, pp. 305–311.Google Scholar
  5. Cheng, R. C. H. (1978). Generating beta variates with nonintegral shape parameters. Communications of the ACM 21, 317–322.CrossRefGoogle Scholar
  6. Chiba, N., S. Ohkawa, K. Muraoka, and M. Miura (1994). Visual simulation of botanical trees based on virtual heliotropism and dormancy break. Journal of Visualization and Computer Animation 5(1), 3–15.Google Scholar
  7. Devroye, L. (1986). Non-Uniform Random Variate Generation. New York: Springer-Verlag.Google Scholar
  8. Devroye, L. (1994). Lectures Notes for Computer Science 690A—Probabilistic Analysis of Algorithms and Data Structures. Montreal: School of Computer Science, McGill University.Google Scholar
  9. Devroye, L. (1995). Universal limit laws for depths in random trees. (Submitted).Google Scholar
  10. Devroye, L. and P. Kruszewski (1994). A note on the Horton-Strahler number for random trees. Information Processing Letters 52, 155–159.CrossRefGoogle Scholar
  11. Devroye, L. and P. Kruszewski (1995). On the horton-strahler number for random tries. (Submitted).Google Scholar
  12. Kruszewski, P. (1994). Using the horton-strahler number to draw trees. Technical Report SOCS-94.1, School of Computer Science, McGill University.Google Scholar
  13. Pittel, B. (1985). Asymptotical growth of a class of random trees. Annals of Probability 13, 414–427.Google Scholar
  14. Prusinkiewicz, P. and A. Lindenmayer (1990). The Algorithmic Beauty of Plants. New York: Springer-Verlag.Google Scholar
  15. Richter, J. P. (1970). The literary works of Leonardo Da Vinci (3 ed.). New York: Phaidon Publishers Inc.Google Scholar
  16. Stephen, G. A. (1994). String Searching Algorithms. Lecture Notes Series on Computing. New York: Springer-Verlag.Google Scholar
  17. Sugden, A. (1984). Longman Illustrated Dictionary of Botany. Essex, UK: Longman Group Limited.Google Scholar
  18. Viennot, X. G. (1990). Trees everywhere. In A. Arnold (Ed.), Proceedings of the 15th Colloquium on Trees in Algebra and Programming, Copenhagen, Denmark, May 15–18, 1990, Lecture Notes in Computer Science, Volume 431, Berlin, pp. 18–41. Springer-Verlag.Google Scholar
  19. Viennot, X. G., G. Eyrolles, N. Janey, and D. Arquès (1989). Combinatorial analysis of ramified patterns and computer imagery of trees. In Proceedings of SIGGRAPH'89, Computer Graphics, Volume 23, pp. 31–40.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Luc Devroye
    • 1
  • Paul Kruszewski
    • 1
  1. 1.School of Computer ScienceMcGill UniversityMontrealCanada

Personalised recommendations