Stochastic behavior of a quantum pendulum under a periodic perturbation

  • G. Casati
  • B. V. Chirikov
  • F. M. Izraelev
  • Joseph Ford
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 93)


This paper discusses a numerical technique for computing the quantum solutions of a driver pendulum governed by the Hamiltonian
$$H = (p_\theta ^2 /2m\ell ^2 ) - [m\ell ^2 \omega _o ^2 \cos \theta ] \delta _p (t/T) ,$$
where pe is angular momentum, ϑ is angular displacement, m is pendulum mass, l is pendulum length, ωO2 = g/l is the small displacement natural frequency, and where δp (t/T) is a periodic delta function of period T. The virtue of this rather singular Hamiltonian system is that both its classical and quantum equations of motion can be reduced to mappings which can be iterated numerically and that, under suitable circumstances, the motion for this system can be wildly chaotic. Indeed, the classical version of this model is known to exhibit certain types of stochastic behavior, and we here seek to verify that similar behavior occurs in the quantum description. In particular, we present evidence that the quantum motion can yield a linear (diffusive-like) growth of average pendulum energy with time and an angular momentum probability distribution which is a time-dependent Gaussian just as does the classical motion. However, there are several surprising distinctions between the classical and quantum motions which are discussed herein.


Hamiltonian System Free Rotator Stochastic Behavior Quantum Mapping Quantum Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. I. Arnold and A. Avez, Ergodic Problems of Classical Mechanics (W. A. Benjamin, Inc., New York, 1968); J. Moser, Stable and Random Motions in Dynamical Systems (Princeton Univ. Press, Princeton, 1973); Z. Nitecki, Differentiable Dynamics (MIT Press, Cambridge, 1971).Google Scholar
  2. 2.
    G. M. Zaslavsky, Statistical Irreversibility in Nonlinear Systems (Nauka, Moskva, 1970, in Russian); J. Ford in Fundamental Problems in Statistical Mechanics, III, Edited by E. G. D. Cohen (North-Holland, Amsterdam, 1975).Google Scholar
  3. 3.
    B. V. Chirikov, “A Universal Instability of Many-Dimensional Oscillator Systems,” Physics Reports (to appear 1979).Google Scholar
  4. 4.
    N. M. Pukhov and D. S. Chernasvsky, Teor. i. Matem. Fiz. 7, 219 (1971).Google Scholar
  5. 5.a
    I. C. Percival, J. Phys. B6, 1229 (1973); J. Phys. A7, 794 (1974)Google Scholar
  6. 5.b
    N. Pomphrey, J. Phys. B7, 1909 (1974); I. C. Percival and N. Pomphrey, Molecular Phys. 31, 97 (1976).Google Scholar
  7. 6.
    K. S. J. Nordholm and S. A. Rice, J. Chem. Phys. 61, 203 (1974).Google Scholar
  8. 7.
    K. S. J. Nordholm and S. A. Rice, J. Chem. Phys. 61, 768 (1974).Google Scholar
  9. 8.
    E. V. Shuryak, Zh. Eksp. Teor. Fiz. 71, 2039 (1976).Google Scholar
  10. 9.
    G. M. Zaslavsky and N. N. Filonenko, Soviet Phys. JETP 38, 317 (1974). K. Hepp and E. H. Lieb in Lecture Notes in Physics, V. 38, Edited by J. Moser (Springer-Verlag, New York, 1974). A. Connes and E. Stormer, Acta Mathematica 134, 289 (1975).Google Scholar
  11. 10.
    John M. Greene, “A Method for Determining a Stochastic Transition,” Preprint, Plasma Physics Laboratory, Princeton, New Jersey.Google Scholar
  12. 11.
    M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover Publications, Inc., New York, 1972), p. 363 and 385.Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • G. Casati
    • 1
  • B. V. Chirikov
    • 2
  • F. M. Izraelev
    • 2
  • Joseph Ford
    • 3
  1. 1.Istituto di FisicaMilanoItaly
  2. 2.Institute of Nuclear PhysicsNovosibirsk 90U.S.S.R.
  3. 3.School of PhysicsGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations