The geometry of elastic waves propagating in an anisotropic elastic medium

  • Dirk-J. Smite
  • Maarten V. de Hoop
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 424)

Abstract

We evaluate the fundamental solution of the hyperbolic system describing the generation and propagation of elastic waves in an anisotropic solid by studying the homology of the so-called slowness hypersurface defined by the characteristic equation. Our starting point is the Herglotz-Petrovsky-Leray integral representation of the fundamental solution. We find an explicit decomposition of the latter solution into integrals over vanishing cycles associated with the isolated singularities on the slowness surface. As is well known in the theory of isolated singularities, integrals over vanishing cycles satisfy a system of differential quations known as Picard-Fuchs equations. We discuss a method to obtain these equations explicitly. Subsequently, we use these to analyse the asymptotic behavior of the fundamental solution near wave front singularities in three dimensions. Our work sheds new light on how to compute the so-called Cagniard-De Hoop contour which is used in numerical integration schemes to obtain the full time behaviour of the fundamental solution for a given direction of propagation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V.I. Al'shits, J. Lothe, Elastic waves in triclinic crystals. I. General theory and the degeneracy problem, Kristallografiya 24 (1979) 672–683Google Scholar
  2. 1a.
    V.I. Al'shits, J. Lothe, Elastic waves in triclinic crystals. II. Topology of polarization fields and some general theorems, Kristallografiya 24 (1979) 683–693.Google Scholar
  3. 2.
    V.I. Arnold, Remarks on the stationary phase method and the Coxeter numbers, Russ. Math. Surv. 28, No. 5 (1973) 19–48.CrossRefGoogle Scholar
  4. 3.
    V.I. Arnold, Wave front evolution and equivariant Morse lemma, Comm. Pure and Appl. Math. 29, 557–582, (1976).Google Scholar
  5. 4.
    V.I. Arnold, Surfaces defined by hyperbolic equations, Math. Zam. 44 (1988) 3–18.Google Scholar
  6. 5.
    V.I. Arnold, On the interior scattering of waves defined by hyperbolic variational principles, Journl. Geom. Phys. 5 (1988) 305–315.CrossRefGoogle Scholar
  7. 6.
    V.I. Arnold, S.M. Gusein-Zade, A.N. Varchenko, Singularities of Differentiable Maps Vol. I and II, Birkhäuser, Boston, 1988.Google Scholar
  8. 7.
    V.I. Arnold, Singularities of Caustics and Wave Fronts, Kluwer Academic Publ., Dordrecht, 1990.Google Scholar
  9. 8.
    M.F. Atiyah, R. Bott, L. Gårding, Lacunae for hyperbolic differential operators with constant coefficients I and II, Acta. Math. 124 (1970) 109–189, and Acta Math. 131 (1973) 145–206Google Scholar
  10. 8a.
    L. Gårding, Sharp fronts of paired oscillatory integrals, Publ. Res. Int. Math. Sci. 12 (1976).Google Scholar
  11. 9.
    B.A. Auld, Acoustic fields and waves in solids, John Wiley, New York, 1973.Google Scholar
  12. 10.
    R. Burridge, Lacunas in two dimensional wave propagation, Proc. Camb. Phil. Soc. 63 (1967) 819–825Google Scholar
  13. 10a.
    R. Burridge, The singularity on the plane lids of the wave surface of elastic media with cubic symmetry, Quart. Journ. Mech. Appl. Math. XX (1967) 41–56Google Scholar
  14. 10b.
    R. Burridge, Lamb's problem for an anisotropic half-space, Quart. Journ. Mech.Appl. Math. XXIV (1971) 81–98.Google Scholar
  15. 11.
    R. Burridge, P. Chadwick, A.N. Norris, Fundamental elastodynamic solutions for anistropic media with ellipsoidal slowness surfaces, submitted to the Proceedings of the Royal Society (1992).Google Scholar
  16. 12.
    L. Cagniard, Réflexion et réfraction des ondes séismiques progressives, Gauthes-Villars, Paris, 1939.Google Scholar
  17. 13.
    S. Crampin, M. Yedlin, Shear wave singularities of wave propagation in anisotropic media, J. Geophys. 49 (1981) 43–46.Google Scholar
  18. 14.
    G.F.D. Duff, The Cauchy problem for elastic waves in an anisotropic medium, Phil. Trans. R. Soc. A. 252 (1960) 249–273.Google Scholar
  19. 15.
    J. J. Duistermaat, Oscillatory integrals, Lagrange Immersions and Unfolding of singularities, Commun. Pure Appl. Math. 27, No. 2 (1974) 207–281Google Scholar
  20. 15a.
    M.V. Fedoryuk, The stationary phase method and pseudodifferential operators, Russ. Math. Surv. 26, No. 1 (1972) 65–115CrossRefGoogle Scholar
  21. 15b.
    A.S. Mishchenko, V.E. Shatalov, B. Yu. Sternin, Lagrangian Manifolds and the Maslov Operator, Springer, New York, 1990Google Scholar
  22. 15.
    J.-M. Kendall, C.J. Thomson, Maslov ray summation, pseudo-caustics, Lagrangian equivalence and transient seismic wave forms, submitted to Geophys. J. Int. (1992).Google Scholar
  23. 16.
    A.G. Every, General closed-form expressions for acoustic waves in elastically anistropic solids, Phys. Rev B 22 (1980) 1746–1760.CrossRefGoogle Scholar
  24. 17.
    I.M. Gel'fand, G.E. Shilov, Generalized functions, Vol. I, Academic Press, New York, 1964.Google Scholar
  25. 18.
    P.A. Griffiths, On the periods of certain rational integrals, I, Ann. of math. 90 (1969) 460–495.Google Scholar
  26. 19.
    A.T. de Hoop, A modification of Cagniard's method for solving seismic pulse problems, Appl. Sci. Res. B8 (1960) 349–356.Google Scholar
  27. 20.
    P. Hubral, M. Tygel, Transient response from a planar acoustic interface by a new point-source decomposition into plane waves, Geoph. 50 (1985) 766–774.CrossRefGoogle Scholar
  28. 21.
    J.A. Hudson, Wavespeed and attenuation of elastic waves in material containing cracks, G.J.R.A.S., 64 (1981) 133–150.Google Scholar
  29. 22.
    J.H.M.T. van der Hijden, Propagation of transient elastic waves in stratified anisotropic media, North Holland, Amsterdam, 1987.Google Scholar
  30. 23.
    F. John, Partial differential equations, Springer-Verlag, New York, 1982.Google Scholar
  31. 24.
    N. Katz, Differential equations for periods, Publ. Math. I.H.E.S. 35 (1968) 71.Google Scholar
  32. 25.
    J. Leray, Hyperbolic differential equations, The Institute for Advanced Study, Princeton N.J., 1952.Google Scholar
  33. 26.
    W. Lerche, D.-J. Smit, N.P. Warner, Differential equations for periods and flat coordinates in two-dimensional topological matter theories, Nucl. Phys. B 372 (1991) 87CrossRefGoogle Scholar
  34. 26a.
    D.R. Morrison, Picard-Fuchs equations and mirror maps for hypersurfaces, in: Essays on Mirror Manifolds, ed. S-T. Yau, International Press Honkong, 1992.Google Scholar
  35. 27.
    D. Ludwig, Exact and asymptotic solutions of the Cauchy problem, Comm. Pure Appl. Math. 13 (1960) 473–508.Google Scholar
  36. 28.
    B. Malgrange, Intégrale asymptotique et monodromie, Ann. Sci. École Normale Supp. 4, No. 7 (1974) 405–430.Google Scholar
  37. 29.
    J. Milnor, Singular Points of Complex Hypersurfaces, Princeton University Press, Princeton N.J., 1968.Google Scholar
  38. 30.
    M.J.P. Musgrave, On the propagation of elastic waves in aelotropic media I, Proc. R. Soc. Lond. A 226 (1954) 339; idem II, Proc. R. Soc. Lond. A 226 (1954) 356Google Scholar
  39. 30a.
    G.F. Miller, M.J.P. Musgrave, On the propagation of elastic waves in aelotropic media III, Proc. R. Soc. Lond. A 236 (1956) 352Google Scholar
  40. 30b.
    M.J.P. Musgrave, Crystal acoustics, Holden Day, San Francisco, 1970.Google Scholar
  41. 31.
    M.J.P. Musgrave, On an elastodynamic classification of orthorhombic media, Proc. R. Soc. Lond. A 374 (1981) 401–429Google Scholar
  42. 31a.
    M.J.P. Musgrave, Acoustic axes in orthorhombic media, Proc. R. Soc. Lond. A 401 (1985) 131–143.Google Scholar
  43. 32.
    D. Nichols, F. Muir, M. Schoenberg, Expanded Abstracts 59th Ann. Mtg. SEG (1989) 471.Google Scholar
  44. 33.
    A.N. Norris, A theory of pulse propagation in anisotropic elastic solids, Wave Motion 9 (1987) 509–532.CrossRefGoogle Scholar
  45. 34.
    R.G. Payton, Elastic wave propagation in transversely isotropic media, Martinus Nijhoff Publishers, The Hague, 1983.Google Scholar
  46. 35.
    R.G. Payton, Int. J. Engng. Sci. 13, 183 (1975).CrossRefGoogle Scholar
  47. 35a.
    R.G. Payton, Instituto Lombardo, (Rend. Sci), A 108, 684 (1974).Google Scholar
  48. 36.
    I. Petrovsky, On the diffusion of waves and the lacunas for hyperbolic equations, Math. Sbo. 17 (59) (1945) 289–370.Google Scholar
  49. 37.
    M. Riesz, L-intégrale de Riemann-Liouville et le problem de Cauchy, Acta Math. 81 (1949) 1–223.Google Scholar
  50. 38.
    G. Salmon, Geometry of three dimensions, Hodges, Foster and Figgis, Dublin, 1882.Google Scholar
  51. 39.
    P.M. Shearer, C.H. Chapman, Ray tracing in azimutally anisotropic media — I. Results for models of aligned cracks in the upper crust, G.J.R.A.S. 96 (1989) 51–64; idem — II. Quasi-shear wave coupling, G.J.R.A.S. 96 (1989) 65–83.Google Scholar
  52. 40.
    M. Schoenberg, F. Muir, A calculus for finely layered anistropic media, Geoph. 54 (1989) 581–589CrossRefGoogle Scholar
  53. 40a.
    J. Hood, M Schoenberg, NDE of fracture-induced anisotropy, Review of Progress in Quantitative Nondestructive Evaluation, 2101–2108, Plenum Press, New York, 1992.Google Scholar
  54. 41.
    D.-J. Smit, M.V. de Hoop, The geometry of the hyperbolic system for an anisotropic perfectly elastic medium, Shell Research preprint, Schlumberger Cambridge Research preprint (1993).Google Scholar
  55. 42.
    A. Sommerfeld, Über die Ausbreitung der Wellen in der drahtlosen Telegraphie, Ann. Physik 28 (1909) 665–737Google Scholar
  56. 42a.
    H. Weyl, Ausbreitung elektromagnetischer Wellen über einem ebenen Leiter, Ann. Physik 60 (1919) 481–500.Google Scholar
  57. 43.
    V.A. Vasil'ev, Sharpness and the local Petrovskii condition for strictly hyperbolic operators with constant coefficients, Math. USSR Izv. 28 (1987) 233–273.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Dirk-J. Smite
    • 1
  • Maarten V. de Hoop
    • 2
  1. 1.Koninklijke/Shell Exploratie en Produktie LaboratoriumRijswijkThe Netherlands
  2. 2.Schlumberger Cambridge ResearchCambridgeEngland

Personalised recommendations