The view-graph approach to visual navigation and spatial memory

  • Hanspeter A. Mallot
  • Matthias Franz
  • Bernhard Schälkopf
  • Heinrich H. Bülthoff
Part V: Robotics, Adaptive Autonomous Agents, and Control
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1327)


This paper describes a purely visual navigation scheme based on two elementary mechanisms (piloting and guidance) and a graph structure combining individual navigation steps controlled by these mechanisms. In robot experiments in real environments, both mechanisms have been tested, piloting in an open environment and guidance in a maze with restricted movement opportunities. The results indicate that navigation and path planning can be brought about with these simple mechanisms. We argue that the graph of local views (snapshots) is a general and biologically plausible means of representing space and integrating the various mechanisms of map behaviour.


Path Planning Path Integration View Graph Visual Navigation Robot Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. A. Cartwright and T. S. Collett. How honey bees use landmarks to guide their return to a food source. Nature, 295:560–564, 1982.Google Scholar
  2. 2.
    J. S. Chahl and M. V. Srinivasan. Visual computation of egomotion using an image interpolation technique. Biol. Cybern., 74:405–411, 1996.Google Scholar
  3. 3.
    T. S. Collett and J. Baron. Learnt sensori-motor mappings in honeybees: interpolation and its possible relevance to navigation. J. comp. Physiol. A, 177:287–298, 1995.Google Scholar
  4. 4.
    M. O. Franz, B. Schölkopf, and H. H. Bülthoff. Homing by parameterized scene matching. In Proc. 4th Europ. Conf. on Artificial Life (to appear, 1997a.Google Scholar
  5. 5.
    M. O. Franz, B. Schölkopf, P. Georg, H. A. Mallot, and H. H. Bülthoff. Learning view graphs for robot navigation. In Proc. 1. Intl. Conf. on Autonomous Agents, 1997b.Google Scholar
  6. 6.
    H. Mallot, H. Bülthoff, P. Georg, B. Schölkopf, and K. Yasuhara. View-based cognitive map learning by an autonomous robot. In F. Fogelman-Soulié and P. Gallinari, editors, Proceedings ICANN'95, vol II, pp 381–386. EC2, Nanterre, France, 1995. 7. H. A. Mallot and S. Gillner. Psychophysical support for a view-based strategy in navigation. Invest. Ophth. Vis. Sci. Suppl., 38, 1997.Google Scholar
  7. 8.
    R. Maurer and V. Séguinot. What is modelling for? A critical review of the models of path integration. J. theor. Biol., 175:457–475, 1995.Google Scholar
  8. 9.
    B. L. McNaughton, C. A. Barnes, J. L. Gerrard, K. Gothard, M. W. Jung, J. J. Knierim, H. Kudrimoti, Y. Qin, W. E. Skaggs, M. Suster, and K. L. Weaver. Deciphering the hippocampal polyglot: The hippocampus as a path integration system. J. experimental Biol., 199:173–185, 1996.Google Scholar
  9. 10.
    B. Poucet. Spatial cognitive maps in animals: New hypotheses on their structure and neural mechanisms. Psychological Rev., 100:163–182, 1993.Google Scholar
  10. 11.
    T. Prescott. Spatial representation for navigation in animals. Adaptive Behavior, 4:85–123, 1996.Google Scholar
  11. 12.
    B. Schölkopf and H. A. Mallot. View-based cognitive mapping and path planning. Adaptive Behavior, 3:311–348, 1995.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Hanspeter A. Mallot
    • 1
  • Matthias Franz
    • 1
  • Bernhard Schälkopf
    • 1
  • Heinrich H. Bülthoff
    • 1
  1. 1.Max-Planck-Institut für biologische KybernetikTübingenGermany

Personalised recommendations