Nature vs. nurture in the development of tangential connections and functional maps in the visual cortex

  • Siegrid Löwel
  • Kerstin E. Schmidt
  • Wolf Singer
Part II: Cortical Maps and Receptive Fields
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1327)


A series of experiments concerned with mechanisms underlying the development of the visual cortex revealed that long-range tangential connections display at least the following three characteristics: i) in strabismic but not in normally raised cats, intracortical fibers preferentially connect cell groups activated by the same eye (‘ocular dominance selectivity’), ii) within the subsystems of the left and right eye domains, they extend primarily between neurons activated by similar stimulus orientations (‘orientation selectivity’) and iii) they exhibit an anisotropy with respect to the cortical axes by preferentially linking neurons with colinearly aligned receptive fields (‘axial specificity’). These results are compatible with the idea of a selective stabilization of tangential fibers between coactive neurons (the “fire together, wire together” — hypothesis). Optical imaging of functional maps in area 17 of strabismic cats further revealed that iso-orientation domains are continuous across the borders between adjacent ocular dominance columns. This rather supports an experience-independent initial development of orientation preference maps. To what extent spontaneous versus visually driven activity patterns might be involved both in the development of tangential connections and in functional maps is discussed.


Visual Cortex Receptive Field Primary Visual Cortex Connectivity Pattern Intersection Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Hebb, D.O. (1949) The organization of behavior. A neuropsychological theory. New York: Wiley.Google Scholar
  2. [2]
    Grinvald, A., Lieke, E., Frostig, R.D., Gilbert, C.D. and Wiesel, T.N. (1986) Nature 324: 361–364.Google Scholar
  3. [3]
    Löwel, S. and Singer, W. (1992) Science 255: 209–212.Google Scholar
  4. [4]
    Schmidt, K.E., Goebel, R., Löwel, S. and Singer, W. (1997a) Europ. J. Neurosci. 9:1083–1089Google Scholar
  5. [5]
    Schmidt, K.E., Kim, D.-S., Singer, W., Bonhoeffer, T. and Löwel, S. (1997b) J. Neurosci., 15:5480–5492Google Scholar
  6. [6]
    Gilbert, C.D. and Wiesel, T.N (1989) J. Neurosci. 9: 2432–2442.Google Scholar
  7. [7]
    Malach, R., Amir, Y., Harel, M. and Grinvald, A. (1993) Proc. Natl. Acad. Sci. USA 90: 10469–10473.Google Scholar
  8. [8]
    Bosking, W.H., Zhang, Y., Schofield, B. and Fitzpatrick, D. (1997) J. Neurosci. 17: 2112–2127.Google Scholar
  9. [9]
    Crowley, J.C., Bosking, W.H., Foster, M. and Fitzpatrick, D. (1996) Soc. Neurosci. Abstr. 22: 404.10.Google Scholar
  10. [10]
    Ruthazer, E.S. and Stryker, M.P. (1996) J. Neurosci. 16: 7253–7269.Google Scholar
  11. [11]
    Stryker, M.P. (1991) In: Development of the visual system (Lam, D.M.-K. and Shatz, C.J., eds.), pp 267–287. Cambridge, MA: MIT Press.Google Scholar
  12. [12]
    Chapman, B., Stryker, M.P. and Bonhoeffer, T. (1996) J. Neurosci. 16: 6443–6453.Google Scholar
  13. [13]
    Gödecke, I., Kim, D.-S., Bonhoeffer, T. and Singer, W. (1997) Europ. J. Neurosci. 17:in press.Google Scholar
  14. [14]
    Gödecke, I. and Bonhoeffer, T. (1996) Nature 379: 251–254.Google Scholar
  15. [15]
    Kim, D.-S. and Bonhoeffer, T. (1994) Nature 370: 370–372.Google Scholar
  16. [16]
    Löwel, S., Schmidt, K., Kim, D.-S., Singer, W. and Bonhoeffer, T. (1994) Eur. J. Neurosci. Suppl. 7:48.06.Google Scholar
  17. [17]
    Schmidt, K.E., Kim, D.-S., Singer, W., Bonhoeffer, T. and Löwel, S. (1994) Soc. Neurosci. Abstr. 20: 137.7.Google Scholar
  18. [18]
    Henry, G.H., Michalski, A., Wimborne, B.M. and McCart, R.J. (1994) Prog. Neurobiol. 43: 381–437.Google Scholar
  19. [19]
    Wiesel, T.N. (1982) Nature 299: 583–591.Google Scholar
  20. [20]
    Huttenlocher, P.R. (1967) Exp. Neurol. 17: 247–262.Google Scholar
  21. [21]
    Kim, U., Bal, T. and McCormick, D.A. (1995) J. Neurophysiol. 74: 1301–1323.Google Scholar
  22. [22]
    McCormick, D.A., Trent, F. and Ramoa, A.S. (1995) J. Neurosci. 15: 5739–5752.Google Scholar
  23. [23]
    Hubel, D.H. and Wiesel, T.N. (1977) Proc. R. Soc. Lond. B 198: 1–59.Google Scholar
  24. [24]
    Bartfeld, E. and Grinvald, A. (1992) Proc. Natl. Acad. Sci. USA 89: 11905–11909.Google Scholar
  25. [25]
    Obermayer, K. and Blasdel, G.G. (1993) J. Neurosci. 13: 4114–4129.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Siegrid Löwel
    • 1
  • Kerstin E. Schmidt
    • 1
  • Wolf Singer
    • 1
  1. 1.Max-Planck Institut für HirnforschungFrankfurt am Main

Personalised recommendations