Some results on top-context-free tree languages

  • Dieter Hofbauer
  • Maria Huber
  • Gregory Kucherov
Contributed Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 787)


Top-context-free tree languages (called corégulier by Arnold and Dauchet [1, 2]) constitute a natural subclass of context-free tree languages. In this paper, we give further evidence for the importance of this class by exhibiting certain closure properties. We systematically treat closure under the operations replacement and substitution as well as under the corresponding iteration operations. Several other well-known language classes are considered as well. Furthermore, various characterizations of the regular top-context-free languages are given, among others by means of restricted regular expressions.


Regular Expression Regular Language Replacement Iteration Closure Property Ground Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Arnold and M. Dauchet. Transductions de Forêts Reconnaissables Monadiques. Forêts Corégulières. RAIRO Informatique Théorique et applications, 10(3):5–28, 1976.Google Scholar
  2. 2.
    A. Arnold and M. Dauchet. Un Théorème de Duplication pour les Forêts Algébriques. JCSS, 13:223–244, 1976.Google Scholar
  3. 3.
    M. Dauchet and S. Tison. Structural Complexity of Classes of Tree Languages. In Tree Automata and Languages, pp. 327–353. Elsevier (North-Holland), 1992.Google Scholar
  4. 4.
    N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In Handbook of Theoretical Computer Science, vol. B, pp. 243–320. Elsevier, 1990.Google Scholar
  5. 5.
    J. Engelfriet and E. Schmidt. IO and OI. I. JCSS, 15:329–353, 1977.Google Scholar
  6. 6.
    F. Gécseg and M. Steinby. Tree automata. Akadémiai Kiadó, Budapest, 1984.Google Scholar
  7. 7.
    D. Hofbauer and M. Huber. Computing linearizations using test sets. In 3rd International Workshop on Conditional Term Rewriting Systems, LNCS 656, pp. 287–301. Springer-Verlag, 1992.Google Scholar
  8. 8.
    D. Hofbauer, M. Huber, and G. Kucherov. Some Results on Top-context-free Tree Languages. Centre de Recherche en Informatique de Nancy, Technical Report, to appear, 1993.Google Scholar
  9. 9.
    J. Hopcroft and J. Ullman. Introduction to Automata Theory. Languages and Computation. Addison-Wesley, 1979.Google Scholar
  10. 10.
    G. Kucherov and M. Tajine. Decidability of regularity and related properties of ground normal form languages. In 3rd International Workshop on Conditional Term Rewriting Systems, LNCS 656, pp. 272–286. Springer-Verlag, 1992.Google Scholar
  11. 11.
    G. A. Kucherov. On relationship between term rewriting systems and regular tree languages. In 4th Conference on Rewriting Techniques and Applications, LNCS 488, pp. 299–311. Springer-Verlag, 1991.Google Scholar
  12. 12.
    T. S. E. Maibaum. Pumping lemmas for term languages. JCSS, 17:319–330, 1978.Google Scholar
  13. 13.
    K. Salomaa. Deterministic Tree Pushdown Automata and Monadic Tree Rewriting Systems. JCSS, 37:367–394, 1988.Google Scholar
  14. 14.
    S. Vágvölgyi and R. Gilleron. For a rewriting system it is decidable whether the set of irreducible ground terms is recognizable. Bulletin of the European Association for Theoretical Computer Science, 48:197–209, 1992.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Dieter Hofbauer
    • 1
  • Maria Huber
    • 2
  • Gregory Kucherov
    • 2
  1. 1.Technische Universität BerlinBerlinGermany
  2. 2.CRIN & INRIA-LorraineVillers-lès-NancyFrance

Personalised recommendations