Advertisement

Un resultat de discontinuite dans les familles de langages

  • Jean-Michel Autebert
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 104)

Abstract

There exists an a-cylinder (resp. a cylinder), i.e. a family closed under inverse gsm mapping (resp. inverse homomorphism) and intersection with regular sets, which is minimal in the sense : no a-cylinder (resp. cylinder) lies between it and the family of all regular sets. We construct an infinite hierarchy of nested a-cylinders such that only a finite number of distinct a-cylinders lie between two of them (such a result is unlikely for full-AFLs or rational cones).

Keywords

Formal Language Theory Mathematical System Theory Infinite Hierarchy Sont Encore Proposition Suivante 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. [1]
    Autebert, J.-M.: Cylindres de languages algébriques, Thèse de Doctorat d'Etat, 1978, Paris.Google Scholar
  2. [2]
    Autebert, J.-M.: Opérations de cylindres et applications séquentielles gauches inverses, Acta Informatica, 11 (1979) p 241–258.CrossRefGoogle Scholar
  3. [3]
    Autebert, J.-M., J. Beauquier, L. Boasson et M. Latteux: Very small families of algebraic non rational languages, Formal Languages Theory: Perspectives and open problems, R.V. Book (ed.), to be published by Academic Press.Google Scholar
  4. [4]
    Autebert, J.-M. et L. Boasson: Generators of cones and cylinders, in Formal Languages Theory: Perspectives and open problems, R.V. Book (ed.), to be published by Academic Press.Google Scholar
  5. [5]
    Beauquier, J.: Générateurs algébriques et systèmes de paires itérantes, Theoretical Computer Science, 8 (1979) p 293–323.CrossRefGoogle Scholar
  6. [6]
    Berstel, J.: Transductions and Context-Free Languages, Teubner Verlag, 1979, Stuttgart.Google Scholar
  7. [7]
    Ginsburg, S.: Formal languages: Algebraic and Automata — Theoretic Properties, North-Holland, 1975.Google Scholar
  8. [8]
    Greibach, S.: Chains of full-AFLs, Mathematical Systems Theory, 4 (1970) p 231–242.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • Jean-Michel Autebert
    • 1
  1. 1.Laboratoire Informatique Théorique et Programmation 104Paris Cedex 05 (F)

Personalised recommendations