Why sometimes probabilistic algorithms can be more effective

  • Farid M. Ablaev
  • Rūsiņš Freivalds
Invited Lectures
Part of the Lecture Notes in Computer Science book series (LNCS, volume 233)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F.M.Ablaev, On the problem of reduction of automata, Izvestija VUZ. Matematika, 1980, No.3, 75–77 (Russian).Google Scholar
  2. 2.
    F.M.Ablaev, Capabilities of probabilistic machines to represent languages in real time, Izvestija VUZ. Matematika, 1985, No.7, 32–40 (Russian).Google Scholar
  3. 3.
    J.M. Barzdin, Complexity of recognition of palindromes by Turing machines, Problemy kibernetiki, v.15, Moscow, Nauka, 1965, 245–248 (Russian).Google Scholar
  4. 4.
    J.M. Barzdin, On computability by probabilistic machines, Doklady AN SSSR, 1969, v.189, No.4, 699–702 (Russian).Google Scholar
  5. 5.
    R.G. Bukharaev, Foundations of the theory of probabilistic automata, Moscow, Nauka, 1985.Google Scholar
  6. 6.
    W. Feller, An introduction to probability theory and its applications, v.1, New York et al., John Wiley, 1957.Google Scholar
  7. 7.
    R. Freivalds, Fast computation by probabilistic Turing machines, Ucenye Zapiski Latvijskogo Gosudarstvennogo Universiteta, 1975, v.233, 201–205 (Russian)Google Scholar
  8. 8.
    R.Freivalds, Probabilistic machines can use less running time, in: Information Processing '77, IFIP (North Holland, 1977), 839–842.Google Scholar
  9. 9.
    R. Freivalds, Language recognition with high probability by various classes of automata, Doklady AN SSSR, 1978, v.239, No.1, 60–62 (Russian).Google Scholar
  10. 10.
    R. Freivalds, Speeding of recognition of languages by usage of random number generators, Problemy kibernetiki, v.36, Moscow, Nauka, 1979, 209–224 (Russian).Google Scholar
  11. 11.
    R.Freivalds, Finite identification of general recursive functions by probabilistic strategies, Proc. Conference FCT, 1979, 138–145.Google Scholar
  12. 12.
    R.Freivalds, On principal capabilities of probabilistic algorithms in inductive inference, Semiotika i informatika, 1979, No.12, 137–140 (Russian).Google Scholar
  13. 13.
    R.Freivalds, A probabilistic reducibility of sets, Proc. USSR Conference on Mathematical Logics, 1979, 137 (Russian).Google Scholar
  14. 14.
    R. Freivalds, Probabilistic two-way machines, Lecture Notes in Computer Science, Springer, 1981, v.118, 33–45.Google Scholar
  15. 15.
    R.Freivalds, Capabilities of various models of probabilistic one-way automata, Izvestija VUZ. Matematika, 1981, No.5, 26–34 (Russian).Google Scholar
  16. 16.
    R. Freivalds, Characterization of capabilities of the simplest method for proving the advantages of probabilistic automata over deterministic ones, Latvijskij matematiceskij ezegodnik, 1983, v.27, 241–251 (Russian).Google Scholar
  17. 17.
    R. Freivalds, Advantages of probabilistic 3-head finite automata over deterministic multi-head ones, Latvijskij matematiceskij ezegodnik, 1985, v.29, 155–163 (Russian).Google Scholar
  18. 18.
    A.V. Gladkij, Formal grammars and languages, Moscow, Nauka, 1973.Google Scholar
  19. 19.
    E.M. Gold, Language identification in the limit, Information and Control, 1967, v.10, 447–474.Google Scholar
  20. 20.
    K. de Leeuw, E.F.Moore, C.E.Shannon and N.Shapiro, Computability by probabilistic machines, Automata Studies, Princeton University Press, 1956, 183–212.Google Scholar
  21. 21.
    N.R.Nigmatullin, Towards the problem of reduction of ω-automata, Verojatnostnye metodi i kibernetika, Kazan University Press, 1979, 61–67 (Russian).Google Scholar
  22. 22.
    L.Pitt, Probabilistic inductive inference, Yale University, YALEU /DCS/ TR-400, June 1985.Google Scholar
  23. 23.
    M.O. Rabin, Probabilistic automata, Information and Control, 1963, v.6, No.3, 230–245.Google Scholar
  24. 24.
    H. Rogers Jr., Theory of recursive functions and effective computability, New York, McGraw Hill, 1967.Google Scholar
  25. 25.
    R.E.Stearns, J.Hartmanis and P.M.Lewis II, Hierarchies of memory limited computation, Proc. IEEE Symposium on Switching Circuit Theory and Logical Design, 1965, 179–190.Google Scholar
  26. 26.
    P.Turakainen, On probabilistic automata and their generalizations, Suomalais, tiedenkat. toimituks., 1968, v.53.Google Scholar
  27. 27.
    A.V.Vaiser, Notes on complexity measures in probabilistic computations, in: Control systems, v.1, Tomsk University Press, 1975, 182–196 (Russian).Google Scholar
  28. 28.
    S.V.Yablonskiy, On lagorithmic difficulties in minimal circuit synthesis, Problemy kibernetiki, v.2, Moscow, Fizmatgiz, 75–121 (Russian).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Farid M. Ablaev
    • 1
  • Rūsiņš Freivalds
    • 2
  1. 1.Department of MathematicsKazan State UniversityKazanUSSR
  2. 2.Computing CenterLatvian State UniversityRigaUSSR

Personalised recommendations