Irreducible representations of the basic classical Lie superalgebras SU(m/n) ; SU(n/n)/U(1) ; OSp(m/2n) ; D(2/1 ; α ) ; G(3) ; F(4).

  • Jean Thierry-Mieg
Group Representations, Group Extensions, Contractions and Bifurcations
Part of the Lecture Notes in Physics book series (LNP, volume 201)

Abstract

Extending the results of Victor Kac, we construct and tabulate exhaustively the irreducible representations, typical and atypical, tensorial and spinorial, of the basic classical Lie superalgebras.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    VKac Lect. Notes in Math. 676 (1978), 597–626.Google Scholar
  2. 2.
    M. Schneunert, W. Nahm & V. Rittenberg J.M.P. 18 (1977) 155.Google Scholar
  3. 3.
    Y. Ne'eman, S. Sternberg PNAS USA 77 (1980) 3127.Google Scholar
  4. 4.
    J. Thierry-Mieg & B. Morel in Superspace and Supergravity, S. Hawking, M. Rocek ed., Cambridge Univ. Press (1981).Google Scholar
  5. 5.
    Sun Hong Zhou, Han Qi Zhi, Sc. Sinica 24 (1981) 914–923.Google Scholar
  6. 6.
    P.D. Jarvis, H.S. Green J. Math. Phys. 20 (1979) 2115.Google Scholar
  7. 7.
    M. Scheunert, Bonn Univ preprints 1982-83.Google Scholar
  8. 8.
    P.H. Dondi, P.D. Jarvis J. Phys. A. 14 (1981) 547.Google Scholar
  9. 9.
    A. Balantekin, I. Bars, J.M.P. 22 (1981) 1149, 1810 23 (1982) 1239.Google Scholar
  10. 10.
    1. Bars, B. Morel, H. Ruegg, J.M.P. in press.Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Jean Thierry-Mieg
    • 1
  1. 1.Groupe d'Astrophysique Relativiste ObservatoireMeudonFrance

Personalised recommendations