Orders of Gauss periods in finite fields

  • Joachim von zur Gathen
  • Igor Shparlinski
Session 7A
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1004)

Abstract

We show that Gauss periods of special type give an explicit polynomial-time construction of elements of exponentially large multiplicative order in some finite fields. It can be considered as a step towards solving the celebrated problem of finding primitive roots in finite fields in polynomial time.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Clausen, A. Dress, J. Grabmeier and M. Karpinski, “On zero testing and interpolation of k-sparse multivariate polynomials over finite field”, Theor. Comp. Sci. 84 (1991), 151–164.Google Scholar
  2. 2.
    S. Gao, J. von zur Gathen and D. Panario, “Gauss periods and fast exponentiation in finite fields”, Proceedings LATIN '95, Springer Lecture Notes in Comp. Sci., 911 (1995), 311–322.Google Scholar
  3. 3.
    D. R. Heath-Brown, “Artin's conjecture for primitive roots”, Quart. J. Math., 37 (1986), 27–38.Google Scholar
  4. 4.
    C. Hooley, “On Artin's conjecture”, J. Reine Angew. Math., 225 (1967), 209–220.Google Scholar
  5. 5.
    N. M. Korobov, “Exponential sums with exponential functioms and the distribution of digits in periodic fractions”, Matem. Zametki, 8 (1970), 641–652 (in Russian).Google Scholar
  6. 6.
    N. M. Korobov, “On the distribution of digits in periodic fractions”, Matem. Sbornik, 89 (1972), 654–670 (in Russian).Google Scholar
  7. 7.
    H. W. Lenstra and C. Pomerance, “A rigorous time bound for factoring integers”, J. Amer. Math. Soc., 5 (1992), 483–516.Google Scholar
  8. 8.
    W. Narkiewicz, Classical problems in number theory, Polish Sci. Publ., Warszawa, 1986.Google Scholar
  9. 9.
    J.B. Rosser and L. Schoenfeld, “Approximate functions for some functions of prime numbers“, Illinois J. Math. 6 (1962) 64–94.Google Scholar
  10. 10.
    R. J. Schoof, “Quadratic fields and factorization”, Computational Methods in Number Theory, Amsterdam, 1984, 235–279.Google Scholar
  11. 11.
    D. Shanks, “Class number, a theory of factorization and genera”, Proc. Symp. in Pure Math., Amer. Math. Soc., Providence, 1971, 415–420.Google Scholar
  12. 12.
    I. Shparlinski Computational and algorithmic problems in finite fields, Kluwer Acad. Publ., Dordrecht, 1992.Google Scholar
  13. 13.
    I. Shparlinski, “On finding primitive roots in finite fields”, Theor. Comp. Sci. (to appear).Google Scholar
  14. 14.
    R. Tijdeman, “On the maximal distance between integers composed of small primes”, Compos. Math., 28 (1974), 159–162.Google Scholar
  15. 15.
    K. Werther, “The complexity of sparse polynomials interpolation over finite fields”, Appl. Algebra in Engin., Commun. and Comp., 5 (1994), 91–103.Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Joachim von zur Gathen
    • 1
    • 2
  • Igor Shparlinski
    • 1
    • 2
  1. 1.FB Mathematik-InformatikUniversität-GH PaderbornGermany
  2. 2.School of MPCEMacquarie UniversityAustralia

Personalised recommendations