Spatial context in an image analysis system

  • Philippe Garnesson
  • Gérard Giraudon
Part of the Lecture Notes in Computer Science book series (LNCS, volume 427)


“Scene Analysis”, especially for real data, is a complex problem. There are two main explanations which interest us in this paper.

The first one is that sometimes an object identification needs informations about his spatial context ([GAR76,OHTA89]). We define the spatial context of an object as topological relations beetween this object and the other objects of the world.

The second explanation is that the detection of an object implies to solve simultaneously two problems, the localization and the identification. This is really difficult because sometimes for the same object class, we must consider variations, for instance shape variation or colour variation. To solve these problems, we use generic models of objects [FUA87,GAR89] which can be expensive with computing time if they explore the whole scene.

In this paper, we increase the formalization of spatial context and we show how it allows to focus the search objects in a limited aera of the scene.


Localization Operator Spatial Context Topological Relation Scene Analysis Aerial Imagery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [ANT89]
    J.L ANTOINE, O. CORBY, M. PUGGELI: “ERASME, a multi expert system for pavement rehabilitation” International Conference on Applications of Advanced Technologies in Transportation Engineering, San Diego, February 89.Google Scholar
  2. [FAI89]
    J. FAIRFIELD: “An Algorithm of diffusion” Rapport de Recherche INRIA à paraître.Google Scholar
  3. [FUA87]
    P. FUA, A.J. HANSON: ” Using geometric models for intelligent Shape extraction”, Image Understanding Workshop, February 87.Google Scholar
  4. [GAR76]
    T.D. GARVEY: “Perceptual strategies for purposive vision”. Tech. Note 117. Menlo Park, Calif.: SRI Artificial Intelligence Center.Google Scholar
  5. [GAR89]
    P. GARNESSON, G. GIRAUDON, P. MONTESINOS: “MESSIE: application à l'interprétation en imagerie aerienne” Rapport de Recherche INRIA n 1012, Mars 89.Google Scholar
  6. [GIR89]
    P. GARNESSON, P. MONTESINOS, G. GIRAUDON, ”MESSIE: Un système multi spécialiste en vision” 7ème congrès Reconnaissance des formes et Intelligence Artificielle, AFCET Novembre 89.Google Scholar
  7. [HAY83]
    B. HAYES-ROTH: ” The Blackboard Architecture: A General Framework for Problem Solving ?”, Stanford University, Report HPP-83-30, May 83Google Scholar
  8. [LAA89]
    H. LAASRI, B. MAITRE: “Coopération dans un univers multi-agents basée sur le modèle du blackboard: études et réalisations”. These, Université de Nancy I, 89.Google Scholar
  9. [MON89]
    P. MONTESINOS, G. GIRAUDON, ” A Rule Interpreter for Handling Image Primitives in Scene Analysis”, Rapport de Recherche INRIA, A paraître.Google Scholar
  10. [OHTA89]
    Y. OHTA:”A region oriented image-analysis system by computer” Ph.D. thesis, Kyoto University Department of Information Science.Google Scholar
  11. [RIS89]
    B.A. DRAPER, R.T. COLLINS, A.R. HANSON, E.M.RISEMAN:” The Schema System”. International Journal of Computer Vision 89.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Philippe Garnesson
    • 1
  • Gérard Giraudon
    • 1
  1. 1.INRIA Sophia AntipolisValbonne cedexFrance

Personalised recommendations