Object detection using model based prediction and motion parallax

  • Stefan Carlsson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 427)


  1. [1]
    H. von Helmholtz, Physiological optics, vol.3, 1866Google Scholar
  2. [2]
    J.J. Gibson, The perception of the visual world, Houghton, Muffin, Boston 1950 Google Scholar
  3. [3]
    H.C. Lounguet-Higgins and K. Prazdny, “The interpretation of a moving retinal image“, Proc. Roy. Soc. London B-208, pp. 385–397. 1980Google Scholar
  4. [4]
    R.C. Nelson and J. Aloimonos, “Using flow field divergence for obstacle avoidance: Towards qualitative vision“, Proc. of 2:nd Int. Conf. on Computer Vision, Tampa Florida, pp. 188–196 1988 Google Scholar
  5. [5]
    W.B.Thompsom, K.M.Much and V.A.Berzins, “Dynamic occlusion analysis in optical flow fields“, IEEE Trans. Pattern Anal. Machine Intelligence, Vol. PAMI-7, No.4, July 1985Google Scholar
  6. [6]
    H.A. Mallot, E Schulze and K. Storjohann, “Neural network strategies for robot navigation“ Proc. of nEuro '88, Paris, June 6–9, pp. 560–569, 1988 Google Scholar
  7. [7]
    R.Y. Tsai and T.S. Huang, “Estimating three-dimensional motion parameters of a rigid planar patch“, IEEE-ASSP, Vol ASSP-29, No. 6, December 1981.Google Scholar
  8. [8]
    J. Canny, A computational approach to edge detection, IEEE Trans. Pattern Anal. Machine Intelligence, Vol. PAMI-8, 679–698, 1986.Google Scholar
  9. [9]
    R. Deriche, Using Canny's criteria to derive a recursively implemented optimal edge detector, Int. J. of Comp. Vision, 1, 167–187, 1987.Google Scholar
  10. [10]
    B.K.P. Horn and E.J. Weldon, “Direct methods for recovering motion“, Int. J. of Comp. Vision 2, 51–76, 1988.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Stefan Carlsson
    • 1
  1. 1.Telecommunication Theory and Jan-Olof Eklundh Dep. of Numerical analysis and Computing ScienceRoyal Institute of TechnologyStockholmSweden

Personalised recommendations