Advertisement

Design of a high-gain operational amplifier and other circuits by means of genetic programming

  • John R. Koza
  • David Andre
  • Forrest H. BennettIII
  • Martin A. Keane
Genetic Programming: Issues and Applications
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1213)

Abstract

This paper demonstrates that a design for a low-distortion high-gain 96 decibel (64,860 -to-1) operational amplifier (including both circuit topology and component sizing) can be evolved using genetic programming.

Keywords

Genetic Programming Amplification Factor Operational Amplifier Feedback Resistor Circuit Topology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andre, David and Koza, John R. 1996. Parallel genetic programming: A scalable implementation using the transputer architecture. In Angeline, P. J. and Kinnear, K. E. Jr. (editors). 1996. Advances in Genetic Programming 2. Cambridge, MA: The MIT Press.Google Scholar
  2. Angeline, Peter J. and Kinnear, Kenneth E. Jr. (editors). 1996. Advances in Genetic Programming 2. Cambridge, MA: The MIT Press.Google Scholar
  3. Aaserud, O. and Nielsen, I. Ring. 1995. Trends in current analog design: A panel debate. Analog Integrated Circuits and Signal Processing. 7(1) 5–9.CrossRefGoogle Scholar
  4. Davidor, Yuval, Schwefel, Hans-Paul, and Maenner, Reinhard (editors). 1994. Parallel Problem Solving from Nature — PPSN III. Lecture Notes in Computer Science, Volume 866. Berlin: Springer-Verlag.Google Scholar
  5. Fogel, Lawrence J., Owens, Alvin J., and Walsh, Michael. J. 1966. Artificial Intelligence through Simulated Evolution. New York: John Wiley.Google Scholar
  6. Fogel, Lawrence J., Angeline, Peter J. and Baeck, T. 1996. Evolutionary Programming V: Proceedings of the Fifth Annual Conference on Evolutionary Programming. Cambridge, MA: The MIT Press.Google Scholar
  7. Gruau, Frederic. 1996. Artificial cellular development in optimization and compilation. In Sanchez, Eduardo and Tomassini, Marco (editors). 1996. Towards Evolvable Hardware. Lecture Notes in Computer Science, Volume 1062. Berlin: Springer-Verlag. Pages 48–75.Google Scholar
  8. Holland, John H. 1975. Adaptation in Natural and Artificial Systems. Ann Arbor, MI: University of Michigan Press.Google Scholar
  9. Kinnear, Kenneth E. Jr. (editor). 1994. Advances in Genetic Programming. Cambridge, MA: The MIT Press.Google Scholar
  10. Koza, John R. 1992. Genetic Programming: On the Programming of Computers by Means of Natural Selection. Cambridge, MA: MIT Press.Google Scholar
  11. Koza, John R. 1994a. Genetic Programming II: Automatic Discovery of Reusable Programs. Cambridge, MA: MIT Press.Google Scholar
  12. Koza, John R. 1994b. Genetic Programming II Videotape: The Next Generation. Cambridge, MA: MIT Press.Google Scholar
  13. Koza, John R. 1995. Evolving the architecture of a multi-part program in genetic programming using architecture-altering operations. In McDonnell, John R., Reynolds, Robert G., and Fogel, David B. (editors). 1995. Evolutionary Programming IV: Proceedings of the Fourth Annual Conference on Evolutionary Programming. Cambridge, MA: The MIT Press. Pages 695–717.Google Scholar
  14. Koza, John R., Andre, David, Bennett III, Forrest H, and Keane, Martin A. 1996. Use of automatically defined functions and architecture-altering operations in automated circuit synthesis using genetic programming. In Koza, John R., Goldberg, David E., Fogel, David B., and Riolo, Rick L. (editors). 1996. Genetic Programming 1996: Proceedings of the First Annual Conference, July 28–31, 1996, Stanford University. Cambridge, MA: The MIT Press.Google Scholar
  15. Koza, John R., Bennett III, Forrest H., Andre, David, and Keane, Martin A. 1996a. Toward evolution of electronic animals using genetic programming. Artificial Life V: Proceedings of the Fifth International Workshop on the Synthesis and Simulation of Living Systems. Cambridge, MA: The MIT Press.Google Scholar
  16. Koza, John R., Bennett III, Forrest H, Andre, David, and Keane, Martin A. 1996b. Four problems for which a computer program evolved by genetic programming is competitive with human performance. Proceedings of the 1996 IEEE International Conference on Evolutionary Computation. IEEE Press. Pages 1–10.Google Scholar
  17. Koza, John R., Bennett III, Forrest H., Andre David, and Keane, Martin A. 1996c. Automated design of both the topology and sizing of analog electrical circuits using genetic programming. In Gero, John S. and Sudweeks, Fay (editors). Artificial Intelligence in Design'96. Dordrecht: Kluwer. Pages 151–170.Google Scholar
  18. Koza, John R., Bennett III, Forrest H., Andre, David, and Keane, Martin A. 1996d. Automated WYWIWYG design of both the topology and component values of analog electrical circuits using genetic programming. In Koza, John R., Goldberg, David E., Fogel, David B., and Riolo, Rick L. (editors). 1996. Genetic Programming 1996: Proceedings of the First Annual Conference, July 28–31, 1996, Stanford University. Cambridge, MA: The MIT Press.Google Scholar
  19. Koza, John R., Goldberg, David E., Fogel, David B., and Riolo, Rick L. (editors). 1996. Genetic Programming 1996: Proceedings of the First Annual Conference, July 28–31, 1996, Stanford University. Cambridge, MA: The MIT Press.Google Scholar
  20. Koza, John R., and Rice, James P. 1992. Genetic Programming: The Movie. Cambridge, MA: MIT Press.Google Scholar
  21. Kruiskamp M. W. and Leenaerts, D.. 1995. DARWIN: CMOS opamp synthesis by means of a genetic algorithm. Proceedings of the 32nd Design Automation Conference. New York, NY: Association for Computing Machinery. P. 433–438.Google Scholar
  22. Quarles, Thomas, Newton, A. R., Pederson, D. O., and Sangiovanni-Vincentelli, A. 1994. SPICE 3 Version 3F5 User's Manual. Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA. March 1994.Google Scholar
  23. Rechenberg, Ingo. 1973. Evolutionsstrategie: Optimierung technischer systeme nach Prinzipien der biolgischen evolution. Stuttgart: Frommann-Holzboog.Google Scholar
  24. Thompson, Adrian. 1996. Silicon evolution. In Koza, John R., Goldberg, David E., Fogel, David B., and Riolo, Rick L. (editors). 1996. Genetic Programming 1996: Proceedings of the First Annual Conference, July 28–31, 1996, Stanford University. Cambridge, MA: MIT Press.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • John R. Koza
    • 1
  • David Andre
    • 2
  • Forrest H. BennettIII
    • 3
  • Martin A. Keane
    • 4
  1. 1.Computer Science Dept.Stanford UniversityStanford
  2. 2.Computer Science Dept.University of CaliforniaBerkeley
  3. 3.Computer Science Dept.Stanford UniversityStanford
  4. 4.Martin Keane Inc.Chicago

Personalised recommendations