A hierarchy of institutions separated by properties of parameterized abstract data types

  • Till Mossakowski
Contributed Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 906)


Forgetful Functor Partial Algebra Partial Operation Equational Logic Specification Frame 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Adámek, H. Herrlich, and G. Strecker. Abstract and Concrete Categories. Wiley, New York, 1990.Google Scholar
  2. [2]
    J. Adámek and J. Rosický. Locally presentable and accessíble categories. Cambrigde University Press, 1994.Google Scholar
  3. [3]
    H. Baumeister. Unifying initial and loose semantics of parameterized specifications in an arbitrary institution. In S. Abramsky and T.S.E. Maibaum, editors, TAPSOFT 91 Vol. 1: CAAP 91, volume 493 of Lecture Notes in Computer Science, pages 103–120. Springer Verlag, 1991.Google Scholar
  4. [4]
    P. Burmeister. Partial algebras — survey of a unifying approach towards a two-valued model theory for partial algebras. Algebra Universalis, 15:306–358, 1982.Google Scholar
  5. [5]
    P. Burmeister. A model theoretic approach to partial algebras. Akademie Verlag, Berlin, 1986.Google Scholar
  6. [6]
    M. Cerioli. Relationships between Logical Formalisms. PhD thesis, TD-4/93, Università di Pisa-Genova-Udine, 1993.Google Scholar
  7. [7]
    H. Ehrig, R. M. Jimenez, and F. Orejas. Compositionality results for different types of parameterization and parameter passing in specification languages. In M.-C. Gaudel and J.-P. Jouannaud, editors, TAPSOFT 93, volume 668 of Lecture Notes in Computer Science, pages 31–45. Springer Verlag, 1993.Google Scholar
  8. [8]
    H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1. Springer Verlag, Heidelberg, 1985.Google Scholar
  9. [9]
    H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 2. Springer Verlag, Heidelberg, 1990.Google Scholar
  10. [10]
    J. A. Goguen and R. M. Burstall. Institutions: Abstract model theory for specification and programming. Journal of the Association for Computing Machinery, 39:95–146, 1992. Predecessor in: Lecture Notes in Computer Science 164(1984):221–256.Google Scholar
  11. [11]
    J. A. Goguen and J. Meseguer. Eqlog: Equality, types, and generic modules for logic programming. In D. DeGroot and G. Lindstrom, editors, Logic Programming. Functions, Relations and Equations, pages 295–363. Prentice-Hall, Englewood Cliffs, New Jersey, 1986.Google Scholar
  12. [12]
    J. A. Goguen, J. W. Thatcher, and E. G. Wagner. An initial algebra approach to the specification, correctness and implementation of abstract data types. In R. Yeh, editor, Current Trends in Programming Methodology, volume 4, pages 80–144. Prentice Hall, 1978.Google Scholar
  13. [13]
    H.-J. Kreowski and T. Mossakowski. Equivalence and difference of institutions: Simulating horn clause logic with based algebras. Mathematical Structures in Computer Science, to appear.Google Scholar
  14. [14]
    J. Meseguer. General logics. In Logic Colloquium 87, pages 275–329. North Holland, 1989.Google Scholar
  15. [15]
    T. Mossakowski. Equivalences among various logical frameworks of partial algebras. Submitted to LICS 95.Google Scholar
  16. [16]
    T. Mossakowski. Parameterized recursion theory — a tool for the systematic classification of specification methods. Submitted to Theoretical Computer Science.Google Scholar
  17. [17]
    P. Padawitz. Computing in Horn Clause Theories. Springer Verlag, Heidelberg, 1988.Google Scholar
  18. [18]
    H. Reichel. Initial Computability, Algebraic Specifications and Partial Algebras. Oxford Science Publications, 1987.Google Scholar
  19. [19]
    D. Sannella and A. Tarlecki. Specifications in an arbitrary institution. Information and Computation, 76:165–210, 1988.CrossRefGoogle Scholar
  20. [20]
    A. Tarlecki. On the existence of free models in abstract algebraicinstitutions. Theoretical Computer Science, 37:269–304, 1985.CrossRefGoogle Scholar
  21. [21]
    A. Tarlecki. Quasi-varieties in abstract algebraic institutions. Journal of Computer and System Sciences, 33:333–360, 1986.CrossRefGoogle Scholar
  22. [22]
    J. W. Thatcher, E. G. Wagner, and J. B. Wright. Specification of abstract data types using conditional axioms. Technical Report RC 6214, IBM Yorktown Heigths, 1981.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Till Mossakowski
    • 1
  1. 1.Department of Computer ScienceUniversity of BremenBremen

Personalised recommendations