Advertisement

A categorical characterization of consistency results

  • Christel Baier
  • Mila Majster-Cederbaum
Conference Session 7: Algebraic and Logical Foundations
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1101)

Abstract

It is meaningful that a language is provided with several semantic descriptions: e.g. one which serves the needs of the implementor, another one that is suitable for specification and yet another one that will be used to explain the language to the user. In this case one has to guarantee that the various semantics are ’consistent’. The attempt of this paper is to clarify the notion ’consistency’ and to give categorical characterizations of consistency results. Applications to verification as well as compositional semantics are considered.

Keywords

Final Object Strong Consistency Semantic Description Communicate Sequential Process Denotational Semantic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Abramsky, A. Jung: Domain Theory, In S. Abramsky, D.M. Gabbay and T.S.E. Maibaum, (ed.), Handbook of Logic in Computer Science, Vol. 3, Clarendon Press, 1994.Google Scholar
  2. 2.
    C. Baier, M.E. Majster-Cederbaum: The Connection between an Event Structure Semantics and an Operational Semantics for TCSP, Acta Informatica 31, 1994.Google Scholar
  3. 3.
    C. Baier, M.E. Majster-Cederbaum: Denotational Semantics in the CPO and Metric Approach, Theoretical Computer Science, Vol. 135, 1994.Google Scholar
  4. 4.
    C. Baier, M.E. Majster-Cederbaum: Construction of a CMS on a given CPO, Techn. Report 28/95, Universität Mannheim, 1994, submitted for publication to Acta Informatica.Google Scholar
  5. 5.
    J.W. de Bakker, J.J.Ch. Meyer: Metric Semantics for Concurrency, Report CS-R8803, Centre for Mathematics and Computer Science, Amsterdam, 1988.Google Scholar
  6. 6.
    J.W. de Bakker, J.H.A. Warmerdam: Metric Pomset Semantics for a Concurrent Language with Recursion, Report CS-R9033, Centre for Mathematics and Computer Science, Amsterdam, July 1990.Google Scholar
  7. 7.
    G. Boudol, I.Castellani: Concurrency and Atomicity, Theoretical Computer Science, Vol. 59, 1988.Google Scholar
  8. 8.
    G. Boudol, I.Castellani: Three Equivalent Semantics for CCS, Lecture Notes in Computer Science 469, Springer-Verlag, 1990.Google Scholar
  9. 9.
    S.D. Brookes, C.A.R. Hoare, A.W. Roscoe: A Theory of Communicating Sequential Processes, Journal of the ACM, Vol. 31, No. 3, July 1984.Google Scholar
  10. 10.
    E.M. Clarke, E.A. Emerson: Design and Synthesis of Synchronization Skeletons using Branching Time Temporal Logic, Proc. Workshop on Logics of Programs, Lecture Notes in Computer Science 131, 1981.Google Scholar
  11. 11.
    P. Degano, R. De Nicola, U. Montanari: On the Consistency of’ Truly Concurrent’ Operational and Denotational Semantics, Proc. Symposium on Logic in Computer Science, Edinburgh, 1988.Google Scholar
  12. 12.
    G. Gierz, H. Hofmann, K. Keimel, J. Lawson, M. Mislove, D. Scott: A Compendium of Continuous Lattices, Springer-Verlag, 1980.Google Scholar
  13. 13.
    U. Goltz, R. Loogen: Modelling Nondeterministic Concurrent Processes with Event Structures, Fundamenta Informaticae, Vol. 14, No.1, 1991.Google Scholar
  14. 14.
    U. Goltz, A. Mycroft: On the Relationship of CCS and Petri Nets, Proc. ICALP 84, Lecture Notes in Computer Science 172, Springer-Verlag, 1984.Google Scholar
  15. 15.
    M. Hennessy: Axiomatising Finite Delay Operators, Acta Informatica Vol 21 1984.Google Scholar
  16. 16.
    M. Hennessy, R. Milner: On Observing Nondeterminism and Concurrency, in Automata, Languages and Programming, Lecture Notes in Computer Science 85 1980.Google Scholar
  17. 17.
    C.A.R. Hoare: Communicating Sequential Processes, Prentice Hall, 1985.Google Scholar
  18. 18.
    C.A.R. Hoare, P.E. Lauer: Consistent and Complementary Formal Theories of the Semantics of Programming Languages, Acta Informatica, Vol. 3, 1974.Google Scholar
  19. 19.
    E. Horita: A Fully Abstract Model for a Nonuniform Concurrent Language with Parametrization and Locality, in Proc. REX Workshop '92, Lecture Notes in Computer Science 666, Springer-Verlag 1993.Google Scholar
  20. 20.
    J.N. Kok, J.J.M.M. Rutten: Contractions in Comparing Concurrency Semantics, Report CS-R8755, Centre for Mathematics and Computer Science, November 1987.Google Scholar
  21. 21.
    L. Lamport: Specifying Concurrent Program Modules, ACM Transactions on Programming Languages and Systems, Vol. 5, No. 2, 1983.Google Scholar
  22. 22.
    M. Majster-Cederbaum: General Properties of Semantics, Habilitation Thesis, Technische Universität München, 1983.Google Scholar
  23. 23.
    M. Majster-Cederbaum, C. Baier: Metric Completion versus Ideal Completion, to appear in Theoretical Computer Science, Vol. 170. (Extended abstract in Proc. STRICT 95, J. Desel (ed.), Springer-Verlag.)Google Scholar
  24. 24.
    M. Majster-Cederbaum, F. Zetzsche: The comparison of a CPO-Based with a CMS-Based Semantics for CSP, Theoretical Computer Science, Vol. 124, 1994.Google Scholar
  25. 25.
    R. Milner: A Calculus of Communicating Systems, Lecture Notes in Computer Science 92, Springer-Verlag, 1980.Google Scholar
  26. 26.
    R. Milner: Communication and Concurrency, Prentice Hall, 1989.Google Scholar
  27. 27.
    M.W. Mislove, F.J. Oles: Full Abstraction and Unnested Recursion, in Proc. REX Workshop '92, Lecture Notes in Computer Science 666, Springer-Verlag, 1993.Google Scholar
  28. 28.
    R. de Nicola, M. Hennessy: Testing Equivalences for Processes, Theoretical Computer Science, Vol. 34, 1984.Google Scholar
  29. 29.
    E.R. Olderog: TCSP: Theory of Communicating Sequential Processes, Advances in Petri-Nets 1986, Lecture Notes in Computer Science 255, Springer-Verlag, 1987.Google Scholar
  30. 30.
    E.R. Olderog: Operational Petri-Net Semantics for CCSP, Advances in Petri-Nets 1987, Lecture Notes in Computer Science 266, Springer-Verlag, 1987.Google Scholar
  31. 31.
    A. Pnueli: The Temporal Logic of Programs, 18th Ann. Symp. on Foundations of Computer Science, Providence, 1977.Google Scholar
  32. 32.
    W. Reisig: Partial Order Semantics versus Interleaving Semantics for CSP-like Languages and its Impact on Fairness, Proc. ICALP 84, Lecture Notes in Computer Science 172, Springer-Verlag, 1984.Google Scholar
  33. 33.
    W. Reisig: Elements of a Temporal Logic Coping with Concurrency, SFB-Bericht 342/23, 92A, Techn. Universität München, 1992.Google Scholar
  34. 34.
    M. Spanier: Vergleich zweier Theorien nebenläufiger Prozesse, Ph.D.Thesis, Universität Mannheim, 1993.Google Scholar
  35. 35.
    G. Winskel: Synchronisation Trees, Theoretical Computer Science, Vol. 34, 1984.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Christel Baier
    • 1
  • Mila Majster-Cederbaum
    • 1
  1. 1.Fakultät für Mathematik und InformatikUniversität MannheimGermany

Personalised recommendations