A simplification of Girard's paradox

  • Antonius J. C. Hurkens
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 902)

Abstract

In 1972 J.-Y. Girard showed that the Burali-Forti paradox can be formalised in the type system U. In 1991 Th. Coquand formalised another paradox in U. The corresponding proof terms (that have no normal form) are large. We present a shorter term of type ⊥ in the Pure Type System λU and analyse its reduction behaviour. The idea is to construct a universe U and two functions such that a certain equality holds. Using this equality, we prove and disprove that a certain object in U is well-founded.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barendregt, H.P.: Typed lambda calculi, in: Handbook of Logic in Computer Science (Vol. 2), S. Abramsky et al. (editors), Clarendon Press, Oxford (1992)Google Scholar
  2. Burali-Forti, C.: Una questione sui numeri transfiniti, Rendiconti del Circolo Matematico di Palermo 11 (1897) 154–164Google Scholar
  3. Cantor, G.: Beiträge zur Begründung der transfiniten Mengenlehre, II, Mathematische Annalen 49 (1897) 207–246CrossRefMathSciNetGoogle Scholar
  4. Coquand, Th.: An analysis of Girard's paradox, in: Proceedings Symposium on Logic in Computer Science: Cambridge, Massachusetts, June 16–18, 1986, IEEE Computer Society Press, Washington, D.C. (1986) 227–236Google Scholar
  5. Coquand, Th.: A New Paradox in Type Theory, in: Logic and philosophy of science, in Uppsala: papers from the 9th international congress of logic, methodology and philosophy of science, D. Prawitz, D. Westerstaahl (editors), Kluwer Academic Publishers, Dordrecht (1994)?-?Google Scholar
  6. Coquand, Th., Herbelin, H.: A-translation and looping combinators in pure type systems, Journal of Functional Programming 4 (1994) 77–88Google Scholar
  7. Geuvers, J.H.: Logics and Type Systems, Proefschrift, Katholieke Universiteit Nijmegen (1993)Google Scholar
  8. Geuvers, H., Werner, B.: On the Church-Rosser property for Expressive Type Systems and its Consequences for their Metatheoretic Study, in: Proceedings of the Ninth Annual Symposium on Logic in Computer Science, Paris, France, IEEE Computer Society Press, Washington, D.C. (1994) 320–329Google Scholar
  9. Girard, J.-Y.: Interprétation fonctionnelle et élimination des coupures de l'arithmétique d'ordre supérieur, Thèse de Doctorat d'État, Université Paris VII (1972)Google Scholar
  10. Howe, D.J.: The Computational Behaviour of Girard's Paradox, in: Proceedings Symposium on Logic in Computer Science: Ithaka, New York, June 22–25, 1987, IEEE Computer Society Press, Washington, D.C. (1987) 205–214Google Scholar
  11. Mirimanoff, D.: Les antinomies de Russell et de Burali-Forti et le problème fondamental de la théorie des ensembles, L'Enseignement Mathématique 19 (1917) 37–52Google Scholar
  12. Reynolds, J.C.: Polymorphism is not Set-Theoretic, in: Semantics of Data Types, G. Kahn et al. (editors), Lecture Notes in Computer Science 173, Springer-Verlag, Berlin Heidelberg (1984) 145–156Google Scholar
  13. Russell, B.: The Principles of Mathematics, Cambridge University Press, Cambridge, G.B. (1903)Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Antonius J. C. Hurkens
    • 1
  1. 1.NS HapsThe Netherlands

Personalised recommendations