Expanding extensional polymorphism

  • Roberto Di Cosmo
  • Adolfo Pipemo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 902)

Abstract

We prove the confluence and strong normalization properties for second order lambda calculus equipped with an expansive version of η-reduction. Our proof technique, based on a simple abstract lemma and a labelled λ-calculus, can also be successfully used to simplify the proofs of confluence and normalization for first order calculi, and can be applied to various extensions of the calculus presented here.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Aka93]
    Yohji Akama. On Mints' reductions for ccc-calculus. In Typed Lambda Calculus and Applications, number 664 in LNCS, pages 1–12. Springer Verlag, 1993.Google Scholar
  2. [Bar84]
    Henk Barendregt. The Lambda Calculus; Its syntax and Semantics (revised edition). North Holland, 1984.Google Scholar
  3. [CDC91]
    Pierre-Louis Curien and Roberto Di Cosmo. A confluent reduction system for the λ-calculus with surjective pairing and terminal object. In Leach, Monien, and Artalejo, editors, Intern. Conf. on Automata, Languages and Programming (ICALP), volume 510 of Lecture Notes in Computer Science, pages 291–302. Springer-Verlag, 1991.Google Scholar
  4. [Cub92]
    Djordje Cubric. On free ccc. Distributed on the types mailing list, 1992.Google Scholar
  5. [DCK93]
    Roberto Di Cosmo and Delia Kesner. Simulating expansions without expansions. Technical Report LIENS-93-11/INRIA 1911, LIENS-DMI and INRIA, 1993.Google Scholar
  6. [DCK94a]
    Roberto Di Cosmo and Delia Kesner. Modular properties of first order algebraic rewriting systems, recursion and extensional lambda calculi. In Intern. Conf. on Automata, Languages and Programming (ICALP), Lecture Notes in Computer Science. Springer-Verlag, 1994.Google Scholar
  7. [DCK94b]
    Roberto Di Cosmo and Delia Kesner. Simulating expansions without expansions. Mathematical Structures in Computer Science, 1994. A preliminary version is available as Technical Report LIENS-93-11/INRIA 1911.Google Scholar
  8. [Dou93]
    Daniel J. Dougherty. Some lambda calculi with categorical sums and products. In Proc. of the Fifth International Conference on Rewriting Techniques and Applications (RTA), 1993.Google Scholar
  9. [Ges]
    Alfons Geser. Relative termination. PhD thesis, Dissertation, Fakultät für Mathematik und Informatik, Universität Passau, Germany, 1990. Also available as: Report 91-03, Ulmer Informatik-Berichte, Universität Ulm, 1991.Google Scholar
  10. [JG92]
    Colin Barry Jay and Neil Ghani. The virtues of eta-expansion. Technical Report ECS-LFCS-92-243,LFCS, 1992. University of Edimburgh.Google Scholar
  11. [Kes93]
    Delia Kesner. La definition de fonctions par cas á l'aide de motifs dans des langages applicatifs. Thèse de doctoral, Université de Paris XI, Orsay, december 1993. To appear.Google Scholar
  12. [Min79]
    Gregory Mints. Teorija categorii i teoria dokazatelstv.I. Aktualnye problemy logiki i metodologii nauky, pages 252–278, 1979.Google Scholar
  13. [Nes89]
    Dan Nesmith. An application of Klop's counterexample to a higher-order rewrite system. Draft Paper, 1989.Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Roberto Di Cosmo
    • 1
  • Adolfo Pipemo
    • 2
  1. 1.Ecole Normale SupérieureDMI-LIENSParisFrance
  2. 2.Dipartimento di Scienze dell'InformazioneUniversità di Roma “La Sapienza”RomaItaly

Personalised recommendations