Advertisement

A realization of the negative interpretation of the Axiom of Choice

  • Stefano Berardi
  • Marc Bezem
  • Thierry Coquand
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 902)

Abstract

We present a possible computational content of the negative translation of classical analysis with the Axiom of Choice. Interestingly, this interpretation uses a refinement of the realizibility semantics of the absurdity proposition, which is not interpreted as the empty type here. We also show how to compute witnesses from proofs in classical analysis, and how to extract algorithms from proofs of ∀∃ statements.

Keywords

Classical Logic Axiom Schema Negative Interpretation Realizability Interpretation Lambda Abstraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W. Ackermann. Begründung des Tertium non datur mittels der Hilbertschen Theorie der Widerspruchsfreiheit. Mathematische Annalen, 93, 1924, p. 1–36CrossRefMathSciNetGoogle Scholar
  2. [2]
    M. Bezem. Strong Normalization of Barrecursive Terms Without Using Infinite Terms. Archiv für mathematische Logik und Grundlagenforschung, 25, 1985, p. 175–182CrossRefGoogle Scholar
  3. [3]
    E. Bishop. Foundations of Constructive Analysis. New York, McGraw-Hill, 1967.Google Scholar
  4. [4]
    R. Constable and C. Murthy. Finding Computational Content in Classical Proofs. In G. Huet and G. Plotkin, editors, Logical Frameworks, 341–362, (1991), Cambridge University Press.Google Scholar
  5. [5]
    Th. Coquand. A semantics of evidence for classical arithmetic. Journal of Symbolic Logic, to appear, 1994.Google Scholar
  6. [6]
    K. Gödel. Collected Work. Volumes I and II, S. Feferman, J. W. Dawson, S.C. Kleene, G.H. Moore, R. M. Solovay, J. van Heijenoort, editors, Oxford, 1986.Google Scholar
  7. [7]
    N. Goodman. Intuitionistic arithmetic as a theory of constructions. PhD thesis, Stanford University, 1968.Google Scholar
  8. [8]
    D. Hilbert. Die logischen Grundlagen der Mathematik. Mathematische Annalen, 88, 1923, p. 151–165CrossRefMathSciNetGoogle Scholar
  9. [9]
    D. Hilbert. The foundations of mathematics. In van Heijenoort ed., From Frege to Gödel, p. 465–479.Google Scholar
  10. [10]
    W.A. Howard. Functional interpretation of bar induction by bar recursion. Compos. Mathematica 20 (1968), 107–124.Google Scholar
  11. [11]
    A.N. Kolmogorov. On the principle of the excluded middle. In From Frege to Gödel, J. van Heijenoort, editor, Harvard University Press, Cambridge MA, 1971, pp. 414–437.Google Scholar
  12. [12]
    G. Kreisel. Mathematical Logic. In Lectures on Modern Mathematics, vol. III, ed. Saaty, Wiley, N.Y., 1965, p. 95–195.Google Scholar
  13. [13]
    G.E. Moore. Zermelo's Axiom of Choice: Its Origins, Development and Influence. Springer-Verlag, 1982Google Scholar
  14. [14]
    C. Murthy. Extracting Constructive Content from Classical Proofs. Ph. D. Thesis, 1990.Google Scholar
  15. [15]
    C. Spector. Provably recursive functionals of analysis: a consistency proof of analysis by an extension of principles formulated in current intuitionistic mathematics. Recursive Function Theory, J.C.E. Dekker ed., Proceedings of Symposia in Pure Mathematics V, AMS, p. 1–27, 1961.Google Scholar
  16. [16]
    D.N. Osherbon, M. Stob and S. Weinstein. Systems That Learn: An Introduction to Learning Theory for Cognitive and Computer Scientists. MIT Press, 1986.Google Scholar
  17. [17]
    W.W. Tait. Normal form theorem for bar recursive functions of finite type. In Proceedings of the second Scandinavian Logic Symposium, J.E. Fenstad ed., North Holland, Amsterdam, 1971, pp. 353–367.Google Scholar
  18. [18]
    A.S. Troelstra. Metamathematical Investigation of Intuitionistic Arithmetic and Analysis. Lecture Notes in Mathematics 344, Springer-Verlag, Berlin, 1973.Google Scholar
  19. [19]
    A.S. Troelstra. Realizability. ILLC Prepublication Series for Mathematical Logic and Foundations ML-92-09.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Stefano Berardi
    • 1
  • Marc Bezem
    • 2
  • Thierry Coquand
    • 3
  1. 1.Dip. InformaticaChalmers Torino UniversityTorinoItaly
  2. 2.Department of PhilosophyUtrecht UniversityTC UtrechtThe Netherlands
  3. 3.Department of Computer SciencesChalmers University of GothenburgGothenburgSweden

Personalised recommendations