Advertisement

Inverse methods for Optical Tomography

  • S. R. Arridge
  • M. Schweiger
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 687)

Abstract

We describe the main theoretical principles behind Time-resolved Optical Absorption and Scattering Tomography (TOAST). The problem is viewed as the optimisation of an error-norm derived from correlated statistics of the time-dependent photon intensity at the surface of an object. The field is compared with Electrical Impedance Tomography (EIT). Some inverse algorithms are suggested and one implemented in detail: a modified Newton-Raphson approach. Several regularisation schemes are described. Results are given for these schemes applied to several different data sets.

Keywords

Electrical Impedance Tomography Miller Criterion Forward Problem Forward Operator Photon Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F.F. Jöbsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science, 198, pp. 1264–1267, (1977).PubMedGoogle Scholar
  2. 2.
    M. Cope and D.T. Delpy, “System for long term measurement of cerebral blood and tissue oxygenation on newborn infants by near infrared transillumination,” Med. Biol. Eng. Comput., 26, pp. 289–294, (1988).PubMedGoogle Scholar
  3. 3.
    J.S. Wyatt, M. Cope, D.T. Delpy, S. Wray, and E.O.R. Reynolds, “Quantitation of cerebral oxygenation and haemodynamics in sick newborn infants by near infrared spectroscopy,” Lancet, ii, pp. 1063–1066, (1986).CrossRefGoogle Scholar
  4. 4.
    G.A. Navarro and A.E. Profio, “Contrast in diaphanography of the breast,” Med. Phys., 15(2), pp. 181–187, (1988).CrossRefGoogle Scholar
  5. 5.
    S.R. Arridge, M. Cope, P. van der Zee, P.J. Hillson and D.T. Delpy, “Visualisation of the oxygenation state of brain and muscle in newborn infants by near infra-red transillumination”, In: Information Processing in Medical Imaging, Ed: S.L. Bacharach, pp. 155–176, (Dordrecht: Martinus Nijhoff, 1986)Google Scholar
  6. 6.
    S.R. Arridge, P. van der Zee, D.T. Delpy and M. Cope, “Aspects of clinical infra red absorption imaging,” In: The Formation, Handling, and Evaluation of Medical Images, Eds: A. Todd Pokropek and M. A. Viergever, NATO ASI series F, pp. 407–418 (Springer-Verlag, Heidelberg, 1992)Google Scholar
  7. 7.
    G. Jarry, S. Ghesquiere, J.M. Maarek, S. Debray, Bui-Mong-Hung and D. Laurent, “Imaging mammalian tissues and organs using laser collimated transillumination,” J. Biomed. Eng., 6, pp. 70–74 (1984)PubMedGoogle Scholar
  8. 8.
    P.C. Jackson, P.H. Stevens, J.H. Smith, D. Kean, H. Key, P.N.T. Wells, “The development of a system for transillumination computed tomography,” Br. J. Rad., 60, pp. 375–380 (1987).Google Scholar
  9. 9.
    S.R. Arridge, P. van der Zee, M. Cope, D.T. Delpy., “Reconstruction methods for infrared absorption imaging”, Proc. SPIE, 1431, pp. 204–215 (1991)CrossRefGoogle Scholar
  10. 10.
    D.T. Delpy, M. Cope, P. van der Zee, S.R. Arridge, S. Wray and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. & Biol., 33, pp. 1433–1442 (1988)Google Scholar
  11. 11.
    B. Chance, J.S. Leigh, H. Miyake, D.S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufman, W. Levy, M. Young, P. Cohne, H. Yoshioka, R. Boretsky, “Comparison of timeresolved and unresolved measurements of deoxyhemoglobin in brain”, Proc. Nat. Acad. Sci. USA, 85, 4971–4975Google Scholar
  12. 12.
    B. Chance, M. Maris, J. Sorge, M.Z. Zhang, “A phase modulation system for dual wavelength difference spectroscopy of haemoglobin deoxygenation in tissue”, Proc. SPIE, 1204, pp. 481–491 (1990)CrossRefGoogle Scholar
  13. 13.
    J.R. Lakowicz, K. Berndt, “Frequency domain measurement of photon migration in tissues”, Chem. Phys. Lett., 166, 3, pp. 246–252 (1990)CrossRefGoogle Scholar
  14. 14.
    M.S. Patterson, J.D.Moulton, B.C. Wilson, B. Chance, “Applications of time resolved light scattering measurements to photodynamic therapy dosimetry”, Proc SPIE, 1203, pp. 62–75 (1990)CrossRefGoogle Scholar
  15. 15.
    S.R. Arridge, M.Cope, D.T. Delpy., “Theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis”, Physics in Medicine and Biology, 37, 1531–1560, (1992)CrossRefPubMedGoogle Scholar
  16. 16.
    J. Haselgrove, J. Leigh, C. Yee, N-G Wang, M. Maris, B. Chance, “Monte Carlo and diffusion calculations of photon migration in non-infinite highly scattering media”, Proc. SPIE, 1431, 30–41 (1991)CrossRefGoogle Scholar
  17. 17.
    Y. Wang, J-H Chang, R. Aronson, R.L. Barbour, H.L. Graber, J. Lubowsky, “Imaging of scattering media by diffusion tomography: an iterative perturbation approach”, Proc. SPIE, 1641, (in press) (1992)Google Scholar
  18. 18.
    J.R. Singer, F.A. Grünbaum, P.D. Kohn, J.P. Zubelli, “Image reconstruction of the interior of bodies that diffuse radiation”, Science, 248, 990–993 (1990)Google Scholar
  19. 19.
    F.A. Grünbaum, P.D.Kohn, G.A.Latham, J.R.Singer, J.P.Zubelli, “Diffuse tomography”, Proc. SPIE, 1431, pp. 232–238Google Scholar
  20. 20.
    S.R.Arridge, M. Schweiger, M.Hiraoka, D.T.Delpy, “Performance of an iterative reconstruction algorithm for near infrared absorption imaging”, SPIE, 1888, (in press), (1993).Google Scholar
  21. 21.
    R.A.J. Groenhuis, H.A. Ferwada, J.J. Ten Bosch, “Scattering and absorption of turbid materials determined from reflection measurements (parts 1 and 2)”, Applied Optics, 28, 2456–2467 (1983)Google Scholar
  22. 22.
    R. Chandrasekhar, Radiation Transfer, (Clarendon Press, Oxford, 1950)Google Scholar
  23. 23.
    M.C. Case and P.F. Zweifel, Linear Transport Theory, (Addison-Wesley, New York, 1967)Google Scholar
  24. 24.
    M.S. Patterson, B.C. Wilson and D.R. Wyman, “The propagation of optical radiation in tissue 1: models of radiation transport and their application”, Lasers in Medical Science, 6, pp 155–168 (1991)CrossRefGoogle Scholar
  25. 25.
    H. Bremmer, “Random Volume Scattering”, Radio Science Journal of Research, 680 (9), pp. 967–981 (1964)Google Scholar
  26. 26.
    H.W. Lewis, “Multiple scattering in an infinite medium”, Physical Review, 78(3), pp. 526–529 (1950)CrossRefGoogle Scholar
  27. 27.
    B.C. Wilson and G. Adam, “A Monte-Carlo model for the absorption and flux distribution of light in tissue”,Med. Phys., 10, 824–830 (1983)CrossRefPubMedGoogle Scholar
  28. 28.
    P. van der Zee, and D.T. Delpy, “Simulation of the point-spread function for light in tissue”, Adv. Exp. Med. & Biol, 215, 179–192 (1987)Google Scholar
  29. 29.
    S.T. Flock, M.S. Patterson, B.C. Wilson, D.R. Wyman, “Monte Carlo modelling of light propagation in highly scattering tissues — I: Model predictions and comparison with diffusion theory”, IEEE Trans. Biomed. Eng., 36(12), pp. 1162–1168 (1989)CrossRefGoogle Scholar
  30. 30.
    S.R.Arridge, M.Schweiger, M.Hiraoka, D.T.Delpy, “A finite element method for modelling photon transport in tissue”, Medical Physics, 1993 (in press)Google Scholar
  31. 31.
    M. Schweiger, S.R.Arridge, M.Hiraoka, D.T.Delpy, “Application of the Finite Element Method for the Forward problem in IR Absorption imaging”, SPIE, 1768, 97–108, (1992).CrossRefGoogle Scholar
  32. 32.
    J.G. Webster (ed), Electrical Impedance Tomography, (Adam Hilger, Bristol, 1990)Google Scholar
  33. 33.
    E.J. Woo, “Finite Element method and reconstruction algorithms in Electrical Impedance Tomography”, PhD thesis, University of Wisconsin-Madison (1990)Google Scholar
  34. 34.
    G. Eason, A. Veitch, R. Nisbet, F. Turnbull, “The theory of the backscattering of light by blood”, J. Phys. D, 11, 1463–1479, (1978)CrossRefGoogle Scholar
  35. 35.
    J.S.Bendat, A.G.Piersol, Random data: analysis and measurement procedures, (New York: Wiley, 1971)Google Scholar
  36. 36.
    T.J. Yorkey, J.G.Webster, W.J.Tompkins, “Comparing reconstruction techniques for Electrical Impedance Tomography”, IEEE Transactions on Biomedical Engineering., BME-34 (11), pp 843–852 (1987)Google Scholar
  37. 37.
    S.R. Arridge, M. Schweiger, D.T. Delpy, “Iterative reconstruction of near infra-red absorption images”, Proc. SPIE 1767, 372–383, (1992)CrossRefGoogle Scholar
  38. 38.
    D.C. Barber, B.H. Brown, “Recent developments in applied potential tomography”, In: Information processing in medical imaging Ed: S.L. Bacharach, 446–462, (Dordrecht: Martinus Nijhof, 1986)Google Scholar
  39. 39.
    A. Wexler, B. Fry, M.R.Neuman, “Impedance-computed tomography algorithm and system”, Appl. Optics, 24, 3985–3992 (1985)Google Scholar
  40. 40.
    R.V.Kohn, A.McKenney, “Numerical implementation of a variational method for electrical impedance tomography”, Inverse Problems, 6, 389–414 (1990)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • S. R. Arridge
    • 1
  • M. Schweiger
    • 2
  1. 1.Dept. of Computer ScienceUniversity College LondonLondon
  2. 2.Dept. of Medical Physics and BioEngineeringUniversity College LondonLondonEngland

Personalised recommendations