λμ-Calculus: An algorithmic interpretation of classical natural deduction

  • Michel Parigot
Session 8: Logical Frameworks
Part of the Lecture Notes in Computer Science book series (LNCS, volume 624)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    T. GRIFFIN, A formulae-as-types notion of control, Proc. POPL, 1990.Google Scholar
  2. [2]
    W.A. HOWARD, The formulae as types notion of construction. Manuscript 1969. In: To H.B. Curry: Essays on combinatory logic, λ-calculus and formalism; Seidin, Hindley (eds.), Academic Press 1980.Google Scholar
  3. [3]
    J.L. KRIVINE, Opérateurs de mise en mémoire et traduction de Gödel. Archive for Mathematical Logic, 30(1990).Google Scholar
  4. [4]
    G. MURTHY, Classical proofs as programs: how, when, and why. Manuscript, 1991.Google Scholar
  5. [5]
    M. PARIGOT & J.L. KRIVINE, Programming with proofs. Presented at SCT'87. In EIK 26 (1990).Google Scholar
  6. [6]
    M. PARIGOT, Free deduction: an analysis of “computations” in classical logic. 2nd Russian Conference on Logic Programming, 1991 (to appear in LNAI).Google Scholar
  7. [7]
    D. PRAWITZ, Natural deduction. Almqvist&Wiksell, 1965.Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Michel Parigot
    • 1
  1. 1.Equipe de logique - CNRS UA 753 45-55 5éme étageUniversité Paris 7Paris Cedex 05France

Personalised recommendations