Advertisement

Advances in pebbling

Preliminary version
  • Nicholas Pippenger
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 140)

Keywords

Acyclic Directed Graph Inverse Image Explicit Construction Space Requirement Permutation Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    B. von Braunmuehl and R. Verbeek, “A Recognition Algorithm for DCFLs Optimal in Time and Space”, IEEE Symp. on Foundations of Computer Science, 21 (1980) 411–420.Google Scholar
  2. [2]
    S. A. Cook, “Deterministic CFL's Are Accepted Simultaneously in Polynomial Time and Log Squared Space”, ACM Symp. on Theory of Computing, 11 (1979) 338–345.Google Scholar
  3. [3]
    S. A. Cook and R. Sethi, “Storage Requirements for Deterministic Polynomial Time Recognizable Languages”, J. Comp. and Sys. Sci., 13 (1976) 25–37.MathSciNetCrossRefGoogle Scholar
  4. [4]
    O. Gabber and Z. Galil, “Explicit Construction of Linear Size Superconcentrators”, J. Comp. and Sys. Sci., 22 (1981) 407–420.CrossRefGoogle Scholar
  5. [5]
    J. Hartmanis and R. E. Stearns, “On the Computational Complexity of Algorithms”, Trans. AMS, 117 (1965) 285–306.MathSciNetCrossRefGoogle Scholar
  6. [6]
    J. E. Hopcroft, W. J. Paul and L. G. Valiant, “On Time versus Space”, J. ACM, 24 (1977) 332–337.MathSciNetCrossRefGoogle Scholar
  7. [7]
    T. Lengauer and R. E. Tarjan, “Upper and Lower Bounds on Time-Space Tradeoffs”, ACM Symp. on Theory of Computing, 11 (1979) 262–277.MathSciNetGoogle Scholar
  8. [8]
    P.M. Lewis, R. E. Stearns and J. Hartmanis, “Memory Bounds for the Recognition of Context-Free and Context-Sensitive Languages”, IEEE Symp. on Switching Theory and Logical Design, 6 (1965) 191–202.CrossRefGoogle Scholar
  9. [9]
    R. J. Lipton and R. E. Tarjan, “A Separator Theorem for Planar Graphs”, SIAM J. Appl. Math., 36 (1979) 177–189.MathSciNetCrossRefGoogle Scholar
  10. [10]
    R. J. Lipton and R. E. Tarjan, “Applications of a Planar Separator Theorem”, SIAM J. Comp., 9 (1980) 615–627.MathSciNetCrossRefGoogle Scholar
  11. [11]
    G. A. Margulis, “Explicit Construction of Concentrators”, Prob. Info. Trans., 9 (1973) 325–332.Google Scholar
  12. [12]
    K. Mehlhorn, “Pebbling Mountain Ranges and Its Application to DCFL-Recognition”, Internat. Coll. on Automata, Languages, and Programming, 7 (1980) 422–434.MathSciNetCrossRefGoogle Scholar
  13. [13]
    M. S. Paterson and C. E. Hewitt, “Comparative Schematology”, Proj. MAC Conf. on Concurrent Systems and Parallel Computation, (1970) 119–127.Google Scholar
  14. [14]
    W. J. Paul, R. E. Tarjan and J. R. Celoni, “Space Bounds for a Game on Graphs”, Math. Sys. Theory, 10 (1977) 239–251.MathSciNetCrossRefGoogle Scholar
  15. [15]
    W. J. Paul and R. Reischuk, “On Alternation II”, Acta Inf., 14 (1980) 391–403.zbMATHGoogle Scholar
  16. [16]
    N. Pippenger, “Superconcentrators”, SIAM J. Comp., 6 (1977) 298–304.MathSciNetCrossRefGoogle Scholar
  17. [17]
    N. Pippenger, “Fast Simulation of Combinational Logic Networks by Machines without Random-Access Storage”, Allerton Conf. on Communication, Control, and Computing, 15 (1977).Google Scholar
  18. [18]
    N. Pippenger, “Comparative Schematology and Pebbling with Auxiliary Pushdowns”, ACM Symp. on Theory of Computing, 12 (1980) 351–356.Google Scholar
  19. [19]
    N. Pippenger, “Pebbling”, IBM Japan Symp. on Mathematical Foundations of Computer Science, 5 (1980).Google Scholar
  20. [20]
    N. Pippenger, “Pebbling with an Auxiliary Pushdown”, J. Comp. and Sys. Sci., 23 (1981) 151–165.MathSciNetCrossRefGoogle Scholar
  21. [21]
    R. Sethi, “Complete Register Allocation Problems”, SIAM J. Comp., 4 (1975) 226–248.MathSciNetCrossRefGoogle Scholar
  22. [22]
    L. G. Valiant, “Graph-Theoretic Properties in Computational Complexity”, J. Comp. and Sys. Sci., 13 (1976) 278–285.MathSciNetCrossRefGoogle Scholar
  23. [23]
    R. Verbeek, “Time-Space Trade-Offs for General Recursion”, IEEE Symp. on Foundations of Computer Science, 22 (1981) 228–234.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1982

Authors and Affiliations

  • Nicholas Pippenger
    • 1
  1. 1.IBM Research LaboratorySan JoseUSA

Personalised recommendations