Completing biprefix codes

  • D. Perrin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 140)


Formal Power Series Free Monoid Characteristic Series Prefix Code Proper Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Berstel, D. Perrin, M. P. Schützenberger, The Theory of Codes, to appear.Google Scholar
  2. [2]
    Y. Césari, Propriétés combinatoires des codes biprefixes, in Théorie des codes (D.Perrin ed.) LITP, 1979, 20–46.Google Scholar
  3. [3]
    S. Eilenberg, Automata, Languages and Machines, Vol, A, Academic Press, 1974.Google Scholar
  4. [4]
    D. Perrin, Codes asynchrones, Bull. Soc. Math. de France, 105, 1977, 325–404.MathSciNetzbMATHGoogle Scholar
  5. [5]
    A. Restivo, On codes having no finite completions, in Automata Languages and Programming (S. Michaelson ed.) Edinburgh University Press 1976, 38–44.Google Scholar
  6. [6]
    A. Salomaa, M. Soittola, Automata Theoretic Aspects of Formal Power Series, Springer-Verlag, 1978.Google Scholar
  7. [7]
    M. P. Schützenberger, A remark on incompletely specified automata, Information and Control. 8, 1965, 373–376.MathSciNetCrossRefGoogle Scholar
  8. [8]
    M. P. Schützenberger, On a special class of recurrent events, Ann. Math. Stat. 32, 1961, 1201–1213.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1982

Authors and Affiliations

  • D. Perrin
    • 1
  1. 1.Laboratoire d'Informatique LITPUniversité de RouenMont-Saint-AignanFrance

Personalised recommendations