Advertisement

Approximations of infinitary objects

  • G. Comyn
  • M. Dauchet
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 140)

Abstract

We compare metric approximations with ordered ones and define on infinitary CPO's a new metric such that both are bijectively related.

We extend this construction to functional spaces and prove that convergence for our metric implies pointwise convergence and uniform convergence for increasing sequences. Finally we prove that decidable elements in infinitary computable CPO's are effective limits of computable Cauchy sequences in recursive metric spaces.

Keywords

Cauchy Sequence Functional Space Pointwise Convergence Finitary Basis Decidable Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. BIRKOFF LATTICE THEORY 3rd Ed., NEW YORK, 1967Google Scholar
  2. [2]
    L. BOASSON, M. NIVAT ADHERENCES OF LANGUAGES JCSS 20, 1980, pp. 285–309MathSciNetzbMATHGoogle Scholar
  3. [3]
    G. COMYN OBJETS INFINIS CALCULABLES THESE D'ETAT, LILLE, Mars 1982Google Scholar
  4. [4]
    G. COMYN, M. DAUCHET OBJETS INFINITAIRES — APPROXIMATIONS DANS LES CPO's, ET DANS LES ESPACES METRIQUES Colloque A.F.C.E.T. “LES MATHEMATIQUES DE L'INFORMATIQUE”, 16–18 Mars 1982, PARISGoogle Scholar
  5. [5]
    P.M. COHN UNIVERSAL ALGEBRA Harper and Row, NEW YORK, 1965zbMATHGoogle Scholar
  6. [6]
    H. EGLI, R. CONSTABLE COMPUTABILITY CONCEPTS FOR PROGRAMMING LANGUAGES TCS 2, 1976, pp. 98–105MathSciNetCrossRefGoogle Scholar
  7. [7]
    G. GIERZ, K.H. HOFMANN, K. KEIMEL, J.D. LAWSON, M. MISLOVE, D.S. SCOTT A COMPENDIUM OF CONTINUOUS LATTICES Springer Verlag, 1980Google Scholar
  8. [8]
    A. KANDA FULLY EFFECTIVE SOLUTIONS Of RECURSIVE DOMAIN EQUATIONS Math. Foundations of Computer Science, 1979, OLOMOUC, Lecture Notes in Computer Science, nℴ 74, pp. 326–336Google Scholar
  9. [9]
    D. LACOMBE QUELQUES PROCEDES DE DEFINITION EN TOPOLOGIE RECURSIVE Constructivity in Mathematics, Proc. of the Colloquium Held at AMSTERDAM, 1957 Studies in Logic and the foundations of Mathematics, 1959, pp. 129–158Google Scholar
  10. [10]
    Y. MOSCHOVAKIS RECURSIVE METRIC SPACES Fundamenta Mathematicae, LV, 1964, pp. 215–238MathSciNetCrossRefGoogle Scholar
  11. [11]
    M. NIVAT INFINITE WORDS, INFINITE TREES, INFINITE COMPUTATIONS Foundations of Computer Science III Part 2: Languages, Logic, Semantics J.W. De Bakker (Ed.), J. Van Leeuwen (Ed.) Mathematical Centre Tract, 1979, pp. 1–52Google Scholar
  12. [12]
    G. PLOTKIN Tω AS a UNIVERSAL DOMAIN JCSS 17, 1978, pp. 209–236MathSciNetzbMATHGoogle Scholar
  13. [13]
    G. PLOTKIN Personal Comunication, LILLE, Mars 1982Google Scholar
  14. [14]
    G. PLOTKIN A POWERDOMAIN CONSTRUCTION SIAM. J. Comput. 5 (Sept. 1976), pp. 452–487MathSciNetCrossRefGoogle Scholar
  15. [15]
    E. SCIORE, A. TANG COMPUTABILITY THEORY IN ADMISSIBLE DOMAIN Proc. of the 10 th ACM Symp. on the Theory of Computing SAN DIEGO, California, Mai 1978, pp. 95–104Google Scholar
  16. [16]
    D. SCOTT LATTICE THEORY, DATA TYPES AND SEMANTICS Symposium on formal Semantics of Programming Languages Ed. by RANDALL RUSTIN, Sept. 1970 Prentice Hall, Inc. ENGLEWOOD CLIFFS, New JerseyGoogle Scholar
  17. [17]
    M. SMYTH EFFECTIVELY GIVEN DOMAINS Theoretical Computer Science 5, 1977, pp. 257–274MathSciNetCrossRefGoogle Scholar
  18. [18]
    K. WEIHRAUCH, U. SCHREIBER METRIC SPACES DEFINED BY WEIGHTED ALGEBRAIC CPO's FCT 79, Math. Research, Akademic Verlag, pp. 516–522Google Scholar
  19. [19]
    G. WERNER REPRESENTATION OF EFFECTIVELY COMPUTABLE LIMITS Technical Report IT, LILLE-I, nℴ IT-3081Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1982

Authors and Affiliations

  • G. Comyn
    • 1
  • M. Dauchet
    • 1
  1. 1.U.E.R. D'I.E.E.A. - InformatiqueUniversite de lille-IVilleneuve D'ascq CédexFrance

Personalised recommendations