Advertisement

Extended Chomsky-Schützenberger theorems

  • Franz-Josef Brandenburg
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 140)

Abstract

The operations of a homomorphic equality and an inverse homomorphic equality are introduced. These operations are obtained from n-tuples of homomorphisms, incorporating the notion of an equality set. For one-tuples they are a homomorphism and an inverse homomorphism. Homomorphic equality and inverse homomorphic equality operations provide simple and uniform characterizations of the recursively enumerable sets in terms of the regular sets, and of classes H(L λ MR) in terms of L. These characterizations resemble the Chomsky-Schützenberger theorem for context-free languages.

Keywords

Small Class Input String Canonical Extension Input Tape Formal Language Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.V. Book, Simple representations of certain classes of languages. J. Assoc. Comput. Mach. 25 (1978), 23–31.MathSciNetCrossRefGoogle Scholar
  2. 2.
    R.V. Book and F.J. Brandenburg, Equality sets and complexity classes. SIAM J. Comput. 9 (1980), 729–743.MathSciNetCrossRefGoogle Scholar
  3. 3.
    R.V. Book and S.A. Greibach, Quasi-realtime languages. Math. Systems Theory 4 (1970), 97–111.MathSciNetCrossRefGoogle Scholar
  4. 4.
    R.V. Book, S.A. Greibach, and C. Wrathall, Reset machines. J. Comput. System Sci. 19 (1979), 256–276.MathSciNetCrossRefGoogle Scholar
  5. 5.
    R.V. Book and M. Nivat, Linear languages and the intersection closure of classes of languages. SIAM J. Comput. 7 (1978), 167–177.MathSciNetCrossRefGoogle Scholar
  6. 6.
    R.V. Book, M. Nivat, and M. Paterson, Reversal-bounded acceptors and inter-sections of linear languages. SIAM J. Comput. 3 (1974), 283–295.MathSciNetCrossRefGoogle Scholar
  7. 7.
    F.J. Brandenburg, Multiple equality sets and Post machines. J. Comput. System Sci. 21 (1980), 292–316.MathSciNetCrossRefGoogle Scholar
  8. 8.
    F.J. Brandenburg, Unary multiple equality sets: the languages of rational matrices. Inform. Contr. (in press).Google Scholar
  9. 9.
    F.J. Brandenburg, Homomorphic equality operations on languages. Habilitationsschrift, Universität Bonn (1981).Google Scholar
  10. 10.
    K. Culik II, A purely homomorphic characterization of recursively enumerable sets. J. Assoc. Comput. Mach. 26 (1979), 345–350.MathSciNetCrossRefGoogle Scholar
  11. 11.
    K. Culik II and H.A. Maurer, On simple representations of language families. RAIRO Theoret. Informatics 13 (1979), 241–250.MathSciNetCrossRefGoogle Scholar
  12. 12.
    J. Engelfriet and G. Rozenberg, Equality sets and fixed point languages. Inform Contr. 43 (1979), 20–49.CrossRefGoogle Scholar
  13. 13.
    J. Engelfriet and G. Rozenberg, Fixed point languages, equality languages and representations of recursively enumerable languages. J. Assoc. Comput. Mach. 27 (1980), 499–518.MathSciNetCrossRefGoogle Scholar
  14. 14.
    S. Ginsburg, “Algebraic and automata-theoretic properties of formal languages”. North-Holland, Amsterdam, 1975.zbMATHGoogle Scholar
  15. 15.
    A. Salomaa, Equality sets for homomorphisms of free monoids. Acta Cybernetica 4 (1978), 127–139.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1982

Authors and Affiliations

  • Franz-Josef Brandenburg
    • 1
  1. 1.Institut für InformatikUniversität BonnBonnFederal Republic of Germany

Personalised recommendations