Computing the maximum overlap of two convex polygons under translations

  • Mark de Berg
  • Olivier Devillers
  • Marc van Kreveld
  • Otfried Schwarzkopf
  • Monique Teillaud
Session 4a: Invited Presentation
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1178)


Let P be a convex polygon in the plane with n vertices and let Q be a convex polygon with m vertices. We prove that the maximum number of combinatorially distinct placements of Q with respect to P under translations is O(n2+m2+min(nm2+n2m)), and we give an example showing that this bound is tight in the worst case. Second, we present an O((n+m) log(n+m)) algorithm for determining a translation of Q that maximizes the area of overlap of P and Q.

We also prove that the placement of Q that makes the centroids of Q and P coincide realizes an overlap of at least 9/25 of the maximum possible overlap. As an upper bound, we show an example where the overlap in this placement is 4/9 of the maximum possible overlap.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pankaj K. Agarwal, Micha Sharir, and Sivan Toledo. Applications of parametric searching in geometric optimization. In Proc. 3rd ACM-SIAM Sympos. Discrete Algorithms, pages 72–82, 1992.Google Scholar
  2. 2.
    H. Alt, B. Behrends, and J. Blömer. Approximate matching of polygonal shapes. In Proc. 7th Annu. ACM Sympos. Comput. Geom., pages 186–193, 1991.Google Scholar
  3. 3.
    H. Alt and M. Godau. Measuring the resemblance of polygonal curves. In Proc. 8th Annu. ACM Sympos. Comput. Geom., pages 102–109, 1992.Google Scholar
  4. 4.
    D. Avis, P. Bose, T. Shermer, J. Snoeyink, G. Toussaint, and B. Zhu. On the sectional area of convex polytopes. In Proc. 12th Annu. ACM Sympos. Comput. Geom., pages C11–C12, 1996.Google Scholar
  5. 5.
    F. Avnaim and J.-D. Boissonnat. Polygon placement under translation and rotation. In Proc. 5th Sympos. Theoret. Aspects Comput. Sci., volume 294 of Lecture Notes in Computer Science, pages 322–333. Springer-Verlag, 1988.Google Scholar
  6. 6.
    B. Chazelle. The polygon containment problem. In F. P. Preparata, editor, Computational Geometry, volume 1 of Advances in Computing Research, pages 1–33. JAI Press, London, England, 1983.Google Scholar
  7. 7.
    B. Chazelle. An optimal algorithm for intersecting three-dimensional convex polyhedra. SIAM J. Comput., 21(4):671–696, 1992.CrossRefGoogle Scholar
  8. 8.
    B. Chazelle. Cutting hyperplanes for divide-and-conquer. Discrete Comput. Geom., 9(2):145–158, 1993.CrossRefGoogle Scholar
  9. 9.
    L. P. Chew, M. T. Goodrich, D. P. Huttenlocher, K. Kedem, J. M. Kleinberg, and D. Kravets. Geometric pattern matching under Euclidean motion. In Proc. 5th Canad. Conf. Comput. Geom., pages 151–156, Waterloo, Canada, 1993.Google Scholar
  10. 10.
    L. P. Chew and K. Kedem. Placing the largest similar copy of a convex polygon among polygonal obstacles. Comput. Geom. Theory Appl., 3(2):59–89, 1993.Google Scholar
  11. 11.
    S. J. Fortune. A fast algorithm for polygon containment by translation. In Proc. 12th Internat. Colloq. Automata Lang. Program., volume 194 of Lecture Notes in Computer Science, pages 189–198. Springer-Verlag, 1985.Google Scholar
  12. 12.
    G. Frederickson and D. Johnson. Generalized selection and ranking: sorted matrices. SIAM J. Comput., 13:14–30, 1984.CrossRefGoogle Scholar
  13. 13.
    B. Grünbaum. Convex Polytopes. Wiley, New York, NY, 1967.Google Scholar
  14. 14.
    D. Halperin. Algorithmic Motion Planning via Arrangements of Curves and of Surfaces. Ph.D. thesis, Computer Science Department, Tel-Aviv University, Tel Aviv, 1992.Google Scholar
  15. 15.
    D. P. Huttenlocher, K. Kedem, and J. M. Kleinberg. On dynamic Voronoi diagrams and the minimum Hausdorff distance for point sets under Euclidean motion in the plane. In Proc. 8th Annu. ACM Sympos. Comput. Geom., pages 110–120, 1992.Google Scholar
  16. 16.
    D. P. Huttenlocher, K. Kedem, and M. Sharir. The upper envelope of Voronoi surfaces and its applications. Discrete Comput. Geom., 9:267–291, 1993.CrossRefGoogle Scholar
  17. 17.
    J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston, 1991.Google Scholar
  18. 18.
    D.M. Mount, R. Silverman, and A. Wu. On the area of overlap of translated polygons. SPIE Vision Geometry II, 2060:254–264, 1993.Google Scholar
  19. 19.
    M. Sharir, R. Cole, K. Kedem, D. Leven, R. Pollack, and S. Sifrony. Geometric applications of Davenport-Schinzel sequences. In Proc. 27th Annu. IEEE Sympos. Found. Comput. Sci., pages 77–86, 1986.Google Scholar
  20. 20.
    R. Venkatasubramanian. On the area of intersection of two closed 2D objects. Information Sciences, 82:25–44, 1995.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Mark de Berg
    • 1
  • Olivier Devillers
    • 2
  • Marc van Kreveld
    • 1
  • Otfried Schwarzkopf
    • 3
  • Monique Teillaud
    • 2
  1. 1.Dept. of Computer ScienceUtrecht UniversityTB UtrechtThe Netherlands
  2. 2.INRIASophia-Antipolis cedex
  3. 3.Dept. of Computer SciencePohang University of Science and TechnologyPohangSouth Korea

Personalised recommendations