The Carbon Footprint of Pigmeat in Flanders

  • R. JacobsenEmail author
  • V. Vandermeulen
  • G. Van Huylenbroeck
  • X. Gellynck
Part of the EcoProduction book series (ECOPROD)


Although several international carbon footprint (CF) calculation initiatives have been developed, studies that focus specifically on estimating the CF of pigmeat are rather limited. This paper describes the application of a CF methodology, based on lifecycle assessment of greenhouse gas emissions, for Flemish pigmeat production using the Publicly Available Specification methodology (PAS2050, BSI 2011), which is at present the most developed method and relevant within the agricultural and horticultural sector. Both primary and secondary data have been used to model the meat system through a chain approach. The results are reported using the functional unit of 1 kg of deboned pigmeat; they range from 4.8 to 6.4 kg CO2 eq. per kg of deboned pig meat. A sensitivity analysis has been executed on changes in herd and feed characteristics. The results have been compared to other studies on the CF of pigmeat in the EU and with CF studies on milk and beef production in Flanders. Furthermore, two major hotspots in the CF have been defined: 1) the composition and production of feed and 2) manure production and usage. It is important to mention that the CF is a good indicator for greenhouse gas emissions, but it is not an indicator for environmental impact in general. This article helps to fill the void in the CF literature that existed around pigmeat products and to define a benchmark for the CF of pigmeat.


Carbon footprint Pigmeat LCA Sustainability Hotspots 



This study was funded by the Flemish Administration—Department of Agriculture and Fisheries. The authors gratefully acknowledge this funding.


  1. Blonk H, Kool A, Luske B (2008a) Milieueffecten van Nederlandse consumptie van eiwitrijke producten, Gevolgen van vervanging van dierlijke eiwitten anno 2008. Edited by: Blonk Milieuadvies. GoudaGoogle Scholar
  2. Blonk H, Luske B, Dutilh C (2008b) Greenhouse gas emissions of meat—methodological issues and establishment of an information infrastructure. Blonk MilieuadviesGoogle Scholar
  3. Boerenbond (2012) Bedrijfseconomische boekhouding [CD-ROM]. (2009). LeuvenGoogle Scholar
  4. British Standards Institute (BSI) (2011) PAS2050 Specification for the assessment of the life cycle greenhouse gas emissions of goods and services. EnglandGoogle Scholar
  5. Campens V, van Gijseghem D, Bas L, van Vynckt I (2010) Klimaat en veehouderij. Departement Landbouw en Visserij, afdeling Monitoring en studie, Brussel en Vlaamse Milieumaatschappij, AalstGoogle Scholar
  6. Dalgaard R, Halberg N, Hermansen J (2007) Danish pork production: an environmental assessment. DJF Anim Sci 82:1–34 Google Scholar
  7. Dalgaard T, Olesen JE, Petersen SO, Petersen BM, Jorgensen U, Kristensen T, Hutchings NJ, Gyldenkaerne S, Hermansen JE (2011) Developments in greenhouse gas emissions and net energy use in Danish agriculture—How to achieve substantial CO(2) reductions? Environ Pollut 159(11):3193–3203CrossRefGoogle Scholar
  8. de Vries M, de Boer IJM (2010) Comparing environmental impacts for livestock products: a review of life cycle assessments. Lifestock Sci 128:1–11CrossRefGoogle Scholar
  9. Ecoinvent (2011) Life Cycle Inventory (LCI) database [CD-ROM]. (1998–2013). Swiss centre for life cycle inventories, St.-Gallen, SwitzerlandGoogle Scholar
  10. Environdec (2013) The international environmental product declaration (EDP®) system—a communications tool for international markets. Stockholm, SwedenGoogle Scholar
  11. Eriksson IS, Elmquist H, Stern S, Nybrant T (2005) Environmental systems analysis of pig production—the impact of feed choice. Int J Life Cycle Assess 10(2):143–154CrossRefGoogle Scholar
  12. Espinoza-Orias N, Stichnothe H, Azapagic A (2011) The carbon footprint of bread. Int J Life Cycle Assess 16(4):351–365CrossRefGoogle Scholar
  13. European Commission (2008) Livestock statistics at regional level. EurostatGoogle Scholar
  14. Commission European (2009) Adapting to climate change: the challenge for European agriculture and rural areas. Commission staff working document, BrusselsGoogle Scholar
  15. Eurostat (2012) Meat production and foreign trade (annual data). Last update: 11 Oct 2012Google Scholar
  16. FAO (2008) World meat markets at a glance, Food outlook, global market analysis.
  17. FAO (2010) Greenhouse gas emissions from the dairy sector, a life cycle assessment. Food and agriculture organization of the United Nations—animal production and health division, Italy: 98Google Scholar
  18. Finkbeiner M (2009) Carbon footprinting—opportunities and threats. Int J Life Cycle Assess 14(2):91–94CrossRefGoogle Scholar
  19. Flysjo A, Cederberg C, Henriksson M, Ledgard S (2011a) How does co-product handling affect the carbon footprint of milk? case study of milk production in New Zealand and Sweden. Int J Life Cycle Assess 16(5):420–430CrossRefGoogle Scholar
  20. Flysjo A, Henriksson M, Cederberg C, Ledgard S, Englund JE (2011b) The impact of various parameters on the carbon footprint of milk production in New Zealand and Sweden. Agric Syst 104(6):459–469CrossRefGoogle Scholar
  21. GfK (2013) ConsumerScan Panel—Consumption of food in Flanders in 2010. GfK Panel Services Benelux, Division Belgium, BrusselsGoogle Scholar
  22. Hansen MN, Henriksen K, Sommer SG (2006) Observations of production and emission of greenhouse gases and ammonia during storage of solids separated from pig slurry: effects of covering. Atmos Environ 40(22):4172–4181CrossRefGoogle Scholar
  23. Hoffmann I (2011) Livestock biodiversity and sustainability. Livestock Sci 139(1–2):69–79CrossRefGoogle Scholar
  24. Hortenhuber SJ, Lindenthal T, Zollitsch W (2011) Reduction of greenhouse gas emissions from feed supply chains by utilizing regionally produced protein sources: the case of Austrian dairy production. J Sci Food Agric 91(6):1118–1127CrossRefGoogle Scholar
  25. IDF (2010) A common carbon footprint approach for dairy—the IDF guide to standard life cycle assessment methodology for the dairy sector. Bulletin of the International Dairy Federation, BrusselGoogle Scholar
  26. IPCC (2006a) Intergovernmental panel on climate change [online]. Established by: United Nations environmental programme and world meteorological organization. Geneva. Switzerland. Available from: Accessed January–August 2011
  27. IPCC (2006b) Chapter 10: emissions from livestock and manure management. In: 2006 ipcc guidelines for national greenhouse gas [online]. Geneva. Switzerland. Available from: Accessed January–August 2011
  28. IPCC (2006c) Chapter 11: emissions from managed soils, and CO2 Emissions from lime and urea application. In: 2006 IPCC guidelines for national greenhouse gas [online]. Geneva. Switzerland. Available from: Accessed January–August 2011
  29. IPCC (2007) Intergovernmental panel on climate change [online]. Established by: united nations environmental programme and world meteorological organization. Geneva. Switzerland. Available from: Accessed July–December 2011
  30. Jacobsen R, Vandermeulen V, Vanhuylenbroeck G, Gellynck X (2013) The carbon footprint of pigmeat in Flanders. Int J Agric Sustain 1:1–18. DOI: 10.1080/14735903.2013.798896 Google Scholar
  31. Johnson JMF, Franzluebbers AJ, Weyers SL, Reicosky DC (2007) Agricultural opportunities to mitigate greenhouse gas emissions. Environ Pollut 150(1):107–124CrossRefGoogle Scholar
  32. Leip A, Weiss F, Wassenaar T, Perez I, Fellmann T, Loudjani P, Tubiello F, Grandgirard D, Monni S, Biala K (2010) Evaluation of the livestock sector’s contribution to the EU greenhouse gas emissions (GGELS)—final report. European Commission, Joint Research CentreGoogle Scholar
  33. Kramer KJ, Moll HC, Nonhebel S (1999) Total greenhouse gas emissions related to the Dutch crop production system. Agric Ecosyst Environ 72(1):9–16CrossRefGoogle Scholar
  34. Nielsen P, Nielsen AM, Weidema BP, Frederiksen RH, Dalgaard R, Halberg N (2010) LCA food database [online]. Faculty of agricultural sciences, danish institute for fisheries research, Denmark. Available from: Accessed January–August 2012
  35. Masse DI, Masse L, Xia Y, Gilbert Y (2010) Potential of low-temperature anaerobic digestion to address current environmental concerns on swine production. J Anim Sci 88:E112–E120CrossRefGoogle Scholar
  36. Muller-Lindenlauf M, Deittert C, Kopke U (2010) Assessment of environmental effects, animal welfare and milk quality among organic dairy farms. Livestock Sci 128(1–3):140–148CrossRefGoogle Scholar
  37. Platteau J, van Gijseghem D, van Bogaert T, Maertens E (2012) Landbouwrapport 2012. Department of Agriculture and Fisheries, BrusselsGoogle Scholar
  38. Ridoutt BG, Sanguansri P, Harper GS (2011) Comparing carbon and water footprints for beef cattle production in Southern Australia. Sustainability 3:2443–2455CrossRefGoogle Scholar
  39. Sommer SG, Petersen SO, Sogaard HT (2000) Greenhouse gas emission from stored livestock slurry. J Environ Qual 29(3):744–751CrossRefGoogle Scholar
  40. Sonesson U, Cederberg C, Berglund M (2009) Greenhouse gas emissions in milk production: decision support for climate certification. Klimatmarkning for matGoogle Scholar
  41. Statistics Belgium (2010) Farm Counting, (Landbouwtelling), BrusselsGoogle Scholar
  42. Steinfeld H, Gerber P, Wassenaar T, Castel V, Rosales Mand de Haan C (2006) Livestock’s long shadow: environmental issues and options. FAOGoogle Scholar
  43. Studio LCE (2012) UN CPC 2111. Product category rules for the assessment of the environmental performance of meat of mammals. September 11th 2012. Contributed by: Siena University, COOP Italia, Assocarni. ItalyGoogle Scholar
  44. Thoma G, Popp J, Nutter D, Shonnard D, Ulrich R, Matlock M, Kim DS, Neiderman Z, Kemper N, East C, Adom F (2010) Regional analysis of greenhouse gas emissions from milk production practices in the United States. Seventh international conference on life cycle assessment in the Agri-food sector. ItalyGoogle Scholar
  45. van der Werf HMG, Kanyarushoki C, Corson MS (2009) An operational method for the evaluation of resource use and environmental impacts of dairy farms by life cycle assessment. J Environ Manage 90(11):3643–3652CrossRefGoogle Scholar
  46. van Dooren HJC, Smits MCJ (2007) Reductieopties voor ammoniak- en methaanemissies uit huisvesting voor melkvee. Rapport 80. Animal Sciences Group, WageningenGoogle Scholar
  47. van Liefferinge J (2011) Vlaams Actieplan voor de Varkenshouderij. Afdeling Landbouw en Visserijbeleid, Departement Landbouw en Visserij, Vlaamse Overheid, BrusselGoogle Scholar
  48. van Wezemael L (2011) Consumer attitudes towards safety and health attributes of beef and beef technologies, Department of agricultural economics, Ghent University, GhentGoogle Scholar
  49. Veillette M, Girard M, Viens P, Brzezinski R, Heitz M (2012) Function and limits of biofilters for the removal of methane in exhaust gases from the pig industry. Appl Microbiol Biotechnol 94(3):601–611CrossRefGoogle Scholar
  50. Verspecht A, Vandermeulen V, de Bolle S, Moeskops B, Vermang J, van den Bossche A, van Huylenbroeck G, de Neve S (2011) Integrated policy approach to mitigate soil erosion in West-Flanders. Land Degrad Dev 22(1):84–96CrossRefGoogle Scholar
  51. Verspecht A, Vandermeulen V, ter Avest E, van Huylenbroeck G (2012) Review of trade-offs and co-benefits from greenhouse gas mitigation measures in agricultural production. J Integr Environ Sci 9(1):147–157CrossRefGoogle Scholar
  52. VLM (2011a) Mestbankgegevens [CD-ROM]. (2009). BrusselGoogle Scholar
  53. VLM (2011b) Voortgangsrapport betreffende het mestbeleid in Vlaanderen [online]. Brussel. Available from:
  54. VMM, VITO, AWAC, IBGE-BIM, Federal Public Service of Health, Food Chain Safety and Environment, IRCEL-CELINE, ECONOTEC (2011) Belgium’s greenhouse gas inventory (1990–2008). National Inventory Report submitted under the United Nations Framework Convention on Climate Change and the Kyoto Protocol. April 2010. BelgiumGoogle Scholar
  55. Williams AG, Audsley E, Sandars DL (2006) Determining the environmental burdens and resource use in the production of agricultural and horticultural commodities. Main Report. Defra Research Project IS0205. Bedford: Cranfield University and Defra. Available from:, and

Copyright information

© Springer Science+Business Media Singapore 2014

Authors and Affiliations

  • R. Jacobsen
    • 1
    Email author
  • V. Vandermeulen
    • 1
  • G. Van Huylenbroeck
    • 1
  • X. Gellynck
    • 1
  1. 1.Department of Agricultural EconomicsFaculty of Bioscience Engineering, Ghent UniversityGhentBelgium

Personalised recommendations