Optimization of a Shared Tailrace Channel of Two Pumped-Storage Plants by Physical and Numerical Modeling

  • Giovanni De CesareEmail author
  • Martin Bieri
  • Stéphane Terrier
  • Sylvain Candolfi
  • Martin Wickenhäuser
  • Gaël Micoulet
Part of the Springer Hydrogeology book series (SPRINGERHYDRO)


Pump and turbine operations lead to head losses in the tailrace channel. Pumping discharge may be limited due to potential air entrainment into the pump shaft when the downstream reservoir is at its lowest level and the head losses are too high. Regarding turbine operations, the limit is given by the maximum level in the Pelton turbine chamber due to high water level in the downstream reservoir and head losses. The rapid starting and stopping of turbines and pumps lead to highly unsteady flow in the tailrace channel system of the two connected hydropower plants. Negative and positive surges may lead to similar consequences as for stationary operations such as sudden air entrainment into the pump shaft and submerging of the Pelton runner under operation. Therefore, flow and head losses test were conducted on a physical model at 1:30 scale together with numerical simulations using FLOW-3D. On-site measurement of the existing power plant allows validating the results. Representative and extreme operational scenarios have been simulated; the main results are discussed and presented.


Hydropower Pumped-storage Surge waves Transient flow Head losses Free-surface flow Intake/outlet structure 



This study has been conducted on behalf of the plant owner FMHL. We address our gratitude having retained the LCH for this model study and for allowing the LCH to exploit the model for scientific research. A part of the numerical study has been conducted during an alternative civilian service.


  1. 1.
    LCH (2011). Augmentation de la puissance de l’aménagement Hongrin-Léman—Essais sur modèle numérique 3D. LCH Report (unpublished) 06/2011, EPFL Lausanne (in French).Google Scholar
  2. 2.
    LCH (2012). Augmentation de la puissance de l’aménagement Hongrin-Léman—Etude sur modèle physique. LCH Report (unpublished) 03/2012, EPFL Lausanne (in French).Google Scholar
  3. 3.
    Flow Science (2011). Flow-3D® user manual, Flow Science Inc., Santa Fe, USAGoogle Scholar
  4. 4.
    Blevins, R. D. (1984). Applied fluid dynamics handbook (p. 558). New York: Van Nostrand Reinhold Co.Google Scholar
  5. 5.
    Faure, J., & Nahas, N. (1961). Etude numérique et expérimental d’intumescences à forte courbure du front. Intumescences—Société hydrotechnique de France, 5, 579–587.Google Scholar
  6. 6.
    Soares-Frazao, S., & Zech, Y. (2002). Undular bores and secondary waves—Experiments and hybrid finite—volume modelling. Journal of Hydraulic Research, 40(1), 33–43.CrossRefGoogle Scholar
  7. 7.
    De Cesare, G., Pfister, M., Daneshvari, M. Bieri, M. (2012). Herausforderungen des heutigen wasserbaulichen Versuchswesens mit drei Beispielen. WasserWirtschaft, 7–8, ISSN: 0043–0978 (in German).Google Scholar

Copyright information

© Springer Science+Business Media Singapore 2014

Authors and Affiliations

  • Giovanni De Cesare
    • 1
    Email author
  • Martin Bieri
    • 5
  • Stéphane Terrier
    • 1
  • Sylvain Candolfi
    • 2
  • Martin Wickenhäuser
    • 3
  • Gaël Micoulet
    • 4
  1. 1.Laboratoire de Constructions Hydrauliques (LCH)Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
  2. 2.Université LavalQuébecCanada
  3. 3.Stucky LtdRenensSwitzerland
  4. 4.Alpiq Suisse SALausanneSwitzerland
  5. 5.Pöyry Energy LtdZürichSwitzerland

Personalised recommendations