Skip to main content

Early Detection of Poisonous Gas Leakage in Pipelines in an Industrial Environment Using Gas Sensor, Automated with IoT

  • Chapter
  • First Online:
Advances in Applications of Data-Driven Computing

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1319))

Abstract

Toxic fumes possess tremendous environmental and life-threatening impacts. People are undergoing several diseases due to these and few lost their life as well. Proper detection of toxic fumes leakage is important for the industries which are within our localities. With this respect, we propose a prototype for sensing the toxic fumes leakage in the industry. Gas leakage can be easily be detected and controlled by using the Internet of things. This project is proposed to avoid industrial mishaps and to monitor harmful fumes and chemicals, switch off the mainline when leakage is found, and generate alarm messages to the director of the industry in real time using recent technology the Internet of things. NODEMCUESP8266 Wi-Fi module is used as a primary microcontroller that is attached to the sensors, such as temperature and variety of fumes sensors, which can continuously monitor leakage. A warning alarm is generated immediately if any leakage is found in either pipeline of the system and the main gas knob is turned off immediately. Data collected by the sensors is saved in the database which can be utilized for further processing and it can be analyzed for developing security management, and monitoring application (Web site or android app) can be used as safety care for workers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N. Kaur, R. Mahajan, D. Bagai, P.G. Student, Air quality monitoring system based on Arduino microcontroller. Int. J. Innovative Res. Sci. Eng. Technol. 5(6), 9635–9646 (2016)

    Google Scholar 

  2. K. Cornelius, N.K. Kumar, S. Pradhan, P. Patel, N. Vinay, An efficient tracking system for air and sound pollution using IoT, in 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS) (IEEE, 2020), pp. 22–25

    Google Scholar 

  3. A. Singh, D. Pathak, P. Pandit, S. Patil, P.C. Golar, IOT based air and sound pollution monitoring system. Int. J. Adv. Res. Electr. Electron. Instrum. Eng. 6(3) (2017)

    Google Scholar 

  4. S. Taneja, N. Sharma, K. Oberoi, Y. Navoria, Predicting trends in air pollution in Delhi using data mining, in 2016 1st India International Conference on Information Processing (IICIP) (IEEE, 2016), pp. 1–6

    Google Scholar 

  5. M. Ashwini, N. Rakesh, Enhancement and performance analysis of LEACH algorithm in IOT, in 2017 International Conference on Inventive Systems and Control (ICISC) (IEEE, 2017), pp. 1–5

    Google Scholar 

  6. B.C. Kavitha, R. Vallikannu, IoT based intelligent industry monitoring system, in 2019 6th International Conference on Signal Processing and Integrated Networks (SPIN) (IEEE, 2019), pp. 63–65

    Google Scholar 

  7. R. Sindhwani, P. Goyal, S. Kumar, A. Kumar, Assessment of gaseous and respirable suspended particulate matter (PM10) emission estimates over megacity Delhi: Past trends and future scenario (2000–2020), in Center for atmospheric sciences (2012), pp. 123–140

    Google Scholar 

  8. A. Guthi, Implementation of an efficient noise and air pollution monitoring system using Internet of Things (IoT). Int. J. Adv. Res. Comput. Commun. Eng. 5(7), 237–242 (2016)

    Google Scholar 

  9. V. Kameshwaran, M.R. Baskar, Realtime low-cost air and noise pollution monitoring system. Int. J. Pure Appl. Math. 119(18), 1589–1593 (2018)

    Google Scholar 

  10. M. Benammar, A. Abdaoui, S.H.M. Ahmad, F. Touati, A. Kadri, A modular IoT platform for real-time indoor air quality monitoring. Sensors 18(2), 581 (2018)

    Google Scholar 

  11. Y. Gao, W. Dong, K. Guo, X. Liu, Y. Chen, X. Liu, J. Bu, C. Chen, Mosaic: A low-cost mobile sensing system for urban air quality monitoring, in IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications, (IEEE, 2016), pp. 1–9

    Google Scholar 

  12. R. Nayak, M.R. Panigrahy, V.K. Rai, T.A. Rao, IOT based air pollution monitoring system 3 (2017)

    Google Scholar 

  13. R.N. Shaw, P. Walde, A. Ghosh, IOT based MPPT for performance improvement of solar PV arrays operating under partial shade dispersion, in 2020 IEEE 9th Power India International Conference (PIICON) (SONEPAT, India, 2020), pp. 1–4. https://doi.org/10.1109/piicon49524.2020.9112952

    Google Scholar 

  14. M. Kumar, V.M. Shenbagaraman, R.N. Shaw, A. Ghosh, Predictive data analysis for energy management of a smart factory leading to sustainability, in Innovations in Electrical and Electronic Engineering. Lecture Notes in Electrical Engineering, vol. 661, eds. by M. Favorskaya, S. Mekhilef, R. Pandey, N. Singh (Springer, Singapore, 2021). https://doi.org/10.1007/978-981-15-4692-1_58

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pushan Kumar Dutta .

Editor information

Editors and Affiliations

Glossary

MQ9, MQ135

Gas sensors

IoT

Internet of things

Wi-Fi

Wireless fidelity

LCD

Liquid crystal display

USB

Universal Serial Bus

PWM

Pulse width modulation

DC

Direct current

DHT 22

Temperature sensor

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dutta, P.K., Vinayak, A., Kumari, S., Hussain, M. (2021). Early Detection of Poisonous Gas Leakage in Pipelines in an Industrial Environment Using Gas Sensor, Automated with IoT. In: Bansal, J.C., Fung, L.C.C., Simic, M., Ghosh, A. (eds) Advances in Applications of Data-Driven Computing. Advances in Intelligent Systems and Computing, vol 1319. Springer, Singapore. https://doi.org/10.1007/978-981-33-6919-1_12

Download citation

Publish with us

Policies and ethics