Skip to main content

Computing Mortality for ICU Patients Using Cloud Based Data

  • Chapter
  • First Online:
Advances in Applications of Data-Driven Computing

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1319))

  • 341 Accesses

Abstract

Computing Mortality for ICU patients, who are in critical conditions and in need of extra intensive care has been a major problem. The focus of this work is to predict patient’s health mortality through health record data from ICU Mortality Prediction Challenged. Data are taken from the first 24 h to figure out the in-hospital death by using few models from machine learning. Here, in this health record-based work, personal health information particularly for ICU patients are recorded and observed by the physicians. These methods are cost-effective, reliable, easily accessible, and are maintained in a Cloud platform to increase the quality of service. We have taken 6 general descriptors recorded at the time of admission to a particular unit ward and other different time-series measurements collected during the first 24 h. This chapter focuses on predicting the mortality of ICU patients by checking their health-care data. We have used online mode that can be access by the physicians, patients, and other staff members easily. Therefore, it has the considerable potential to provide an accurate result with a simple and easily accessible mode. As there is less available research works on ICU patients with Cloud Computing. That’s why, our approach has the potential to reach the prediction of mortality for in-hospital ICU patients using machine learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.W. De Lange, S. Brinkman, H. Flaatten, A. Boumendil, A. Morandi, F.H. Andersen, A. Artigas, G. Bertolini, M. Cecconi, S. Christensen, L. Faraldi, Cumulative prognostic score predicting mortality in patients older than 80 years admitted to the ICU. J. Am. Geriatr. Soc. 67(6), 1263–1267 (2019)

    Google Scholar 

  2. A. Schoe, F. Bakhshi-Raiez, N. de Keizer, J.T. van Dissel, E. de Jonge, Mortality prediction by SOFA score in ICU-patients after cardiac surgery; comparison with traditional prognostic–models. BMC anesthesiology 20(1), 1–8 (2020)

    Article  Google Scholar 

  3. L. Guo, D. Wei, Y. WU, M. ZHOU, X. ZHANG, Q. Li, J. Qu, Clinical features predicting mortality risk in patients with viral pneumonia: the MuLBSTA score. Front. Microbiol. 10, 2752 (2019)

    Google Scholar 

  4. C.A. Hu, C.M. Chen, Y.C. Fang, S.J. Liang, H.C. Wang, W.F. Fang, C.C. Sheu, W.C. Perng, K.Y. Yang, K.C. Kao, C.L. Wu, Using a machine learning approach to predict mortality in critically ill influenza patients: a cross-sectional retrospective multicentre study in Taiwan. BMJ Open 10(2), e033898 (2020)

    Article  Google Scholar 

  5. F.S. Ahmad, L. Ali, H.A. Khattak, T. Hameed, I. Wajahat, S. Kadry, S.A.C. Bukhari, A hybrid machine learning framework to predict mortality in paralytic ileus patients using electronic health records (EHRs). J. Ambient Intell. Humanized Comput. 1–11 (2020)

    Google Scholar 

  6. W.P. Brouwer, S. Duran, M. Kuijper, C. Ince, Hemoadsorption with CytoSorb shows a decreased observed versus expected 28-day all-cause mortality in ICU patients with septic shock: a propensity-score-weighted retrospective study. Crit. Care 23(1), 317 (2019)

    Article  Google Scholar 

  7. P. Reis, A.I. Lopes, D. Leite, J. Moreira, L. Mendes, S. Ferraz, T. Amaral, F. Abelha, Predicting mortality in patients admitted to the intensive care unit after open vascular surgery. Surg. Today 49(10), 836–842 (2019)

    Article  Google Scholar 

  8. I. Silva et al., Predicting in-hospital mortality of ICU patients: the physio net/computing in cardiology challenge 2012, in 2012 Computing in Cardiology. (IEEE, 2012), pp. 245–248

    Google Scholar 

  9. D.H. Li, R. Wald, D. Blum, E. McArthur, M.T. James, K.E. Burns, J.O. Friedrich, N.K. Adhikari, D.M. Nash, G. Lebovic, A.K. Harvey, Predicting mortality among critically ill patients with acute kidney injury treated with renal replacement therapy: Development and validation of new prediction models. J. Crit. Care 56, 113–119 (2020)

    Article  Google Scholar 

  10. Z. Zhang, B. Zheng, N. Liu, H. Ge, Y. Hong, Mechanical power normalized to predicted body weight as a predictor of mortality in patients with acute respiratory distress syndrome. Intensive Care Med. 45(6), 856–864 (2019)

    Article  Google Scholar 

  11. S. Mandal, S. Biswas, V.E. Balas, R.N. Shaw, A. Ghosh, Motion prediction for autonomous vehicles from lyft dataset using deep learning, in 2020 IEEE 5th International Conference on Computing Communication and Automation (ICCCA), Greater Noida, India (2020), pp. 768–773. https://doi.org/10.1109/iccca49541.2020.9250790

  12. Y. Belkhier, A. Achour, R.N. Shaw, Fuzzy passivity-based voltage controller strategy of grid-connected PMSG-Based wind renewable energy system, in 2020 IEEE 5th International Conference on Computing Communication and Automation (ICCCA), Greater Noida, India (2020), pp. 210–214. https://doi.org/10.1109/iccca49541.2020.9250838

  13. B.H. Chen, H.J. Tseng, W.T. Chen, P.C. Chen, Y.P. Ho, C.H. Huang, C.Y. Lin, Comparing eight prognostic scores in predicting mortality of patients with acute-on-chronic liver failure who were admitted to an ICU: a single-center experience. J. Clin. Med. 9(5), 1540 (2020)

    Article  Google Scholar 

  14. V. Mandalapu et al., Understanding the relationship between healthcare processes and in-hospital weekend mortality using MIMIC III. Smart Health 14, 100084 (2019)

    Google Scholar 

  15. P.S. Marshall, Tele-ICU in precision medicine: It’s Not What You Do, But How You Do It, in Precision in pulmonary, Critical Care, and Sleep Medicine. (Springer, 2020), pp. 321–331

    Google Scholar 

  16. R.D. Kindle et al., Intensive care unit telemedicine in the era of the big data, artificial intelligence, and computer clinical decision support system. Critical care clinics 35(3), 483–495 (2019)

    Google Scholar 

  17. I. Das, R.N. Shaw, S. Das, Performance analysis of wireless sensor networks in presence of faulty nodes, in 2020 IEEE 5th International Conference on Computing Communication and Automation (ICCCA), Greater Noida, India (2020), pp. 748–751. https://doi.org/10.1109/iccca49541.2020.9250724

  18. S. Mandal, V.E. Balas, R.N. Shaw, A. Ghosh, Prediction analysis of idiopathic pulmonary fibrosis progression from OSIC dataset, in 2020 IEEE International Conference on Computing, Power and Communication Technologies (GUCON), Greater Noida, India (2020), pp. 861–865. https://doi.org/10.1109/gucon48875.2020.9231239

  19. R.N. Shaw, P. Walde, A. Ghosh, IOT based MPPT for performance improvement of solar PV arrays operating under partial shade dispersion, in 2020 IEEE 9th Power India International Conference (PIICON), SONEPAT, India (2020), pp. 1–4. https://doi.org/10.1109/49524.2020.9112952

  20. A. Sharma et al., Mortality prediction of ICU patients using machine learning: a survey, in Proceedings of the International Conference on Compute and Data Analysis, 2017, pp. 245–248

    Google Scholar 

  21. R. Sadeghi, T. Banerjee, W. Romine, Early hospital mortality prediction using vital signals. Smart Health 9, 265–274 (2018)

    Article  Google Scholar 

  22. A.E.W. Johnson, R.G. Mark, Real-time mortality prediction in the intensive care unit, in AMIA Annual Symposium Proceedings, vol. 2017 (American Medical Informatics Association. 2017), p. 994

    Google Scholar 

  23. A.A. Neloy et al., Machine learning based health prediction system using IBM Cloud as PaaS, in 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI) (2019), pp. 444–450

    Google Scholar 

  24. W. Caicedo-Torres, J. Gutierrez. ISeeU2: visually interpretable ICU mortality prediction using deep learning and free-text medical notes, in arXiv preprint arXiv:2005.09284 (2020)

  25. H.-C. Thorsen-Meyer et al., Dynamic and explainable machine learning prediction of mortality in patients in the intensive care unit: a retrospective study of high-frequency data in electronic patient records, in The Lancet Digital Health (2020)

    Google Scholar 

  26. S. Nemati et al., An interpretable machine learning model for accurate prediction of sepsis in the ICU. Crit. Care Med. 46(4), 547 (2018)

    Google Scholar 

  27. T. Hao et al., AI-oriented medical workload allocation for hierarchical cloud/edge/device computing, in arXiv preprint arXiv:2002.03493 (2020)

  28. R. Chen et al., Machine learning algorithm for mortality prediction in patients with advanced penile cancer, in medRxiv (2020)

    Google Scholar 

  29. K. Alghatani, R. Abdelmounaam, A cloud-based intelligent remote patient monitoring architecture, in International Conference on Health Informatics & Medical Systems, HIMS. vol. 19 (2019)

    Google Scholar 

  30. M. Kumar, V.M. Shenbagaraman, R.N. Shaw, A. Ghosh, in Predictive Data Analysis for Energy Management of a Smart Factory Leading to Sustainability, ed. by M. Favorskaya, S. Mekhilef, R. Pandey, N. Singh. Innovations in Electrical and Electronic Engineering. Lecture Notes in Electrical Engineering, vol. 661. Springer, Singapore. https://doi.org/10.1007/978-981-15-4692-1_58

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sucheta Ningombam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ningombam, S., Lodh, S., Majumder, S. (2021). Computing Mortality for ICU Patients Using Cloud Based Data. In: Bansal, J.C., Fung, L.C.C., Simic, M., Ghosh, A. (eds) Advances in Applications of Data-Driven Computing. Advances in Intelligent Systems and Computing, vol 1319. Springer, Singapore. https://doi.org/10.1007/978-981-33-6919-1_11

Download citation

Publish with us

Policies and ethics