Skip to main content

Catalepsy and Twig Mimesis in Insects and Its Neural Control

  • Chapter
  • First Online:
Death-Feigning in Insects

Part of the book series: Entomology Monographs ((ENTMON))

Abstract

Phasmids exhibit twig mimesis as defense mechanism against predators. Most detailed information on the neural basis of this particular behavior is existing for the femur-tibia joint of the stick insect leg. The neural network controlling the activities of the extensor tibiae and the flexor tibiae muscles of this leg joint generates the motor output for catalepsy. Catalepsy, an element of twig mimesis is characterized through extremely slow return movements in response to external perturbations. This property of the neural network governing the femur-tibia joint sets phasmids apart from other orthopteran insect species, e.g. locusts, which do not generate twig mimesis. Cybernetic and comparative analyses have shown that catalepsy is produced by an increased sensitivity of the belonging joint control network to movement velocity. This is achieved by the particular processing of sensory feedback signals about movements of the tibia provided by the femoral chordotonal organ, the main transducer of the femur-tibia joint. This chapter summarizes the present knowledge concerning the neural basis of catalepsy and twig mimesis in the stick insect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bässler U (1972a) Der “Kniesehnenreflex” bei Carausius morosus: Übergangsfunktion und Frequenzgang. Kybernetik 11:32–49

    Article  Google Scholar 

  • Bässler U (1972b) Der Regelkreis des Kniesehnenreflexes bei der Stabheuschrecke Carausius morosus: Reaktionen auf passive Bewegungen der Tibia. Kybernetik 12:8–20

    Article  Google Scholar 

  • Bässler U (1977) Verhaltensphysiologie bei Stabheuschrecken. BIUZ 7(2):48–54

    Article  Google Scholar 

  • Bässler U (1983) Neural basis of elementary behavior in stick insects. Springer, Cham, p 169

    Book  Google Scholar 

  • Bässler U (1993) The femur-tibia control system of stick insects--a model system for the study of the neural basis of joint control. Brain Res Rev 18:207–226

    Article  Google Scholar 

  • Bässler U, Foth E (1982) The neural basis of catalepsy in the stick insect cuniculina impigra. Biol Cybern 45:101–105

    Article  Google Scholar 

  • Bässler U, Stein W (1996) Contributions of structure and innervation pattern of the stick insect extensor tibiae muscle to the filter characteristics of the muscle-joint system. J Exp Biol 199:2185–2198

    Google Scholar 

  • Bässler U, Storrer J (1980) The neural basis of the femur-tibia-control-system in the stick insect Carausius morosus. Biol Cybern 38:107–114

    Article  Google Scholar 

  • Bräunig P, Pflüger H-J (2001) The unpaired median neurons of insects. Adv Insect Physiol 28:185–266

    Article  Google Scholar 

  • Büschges A (1990) Nonspiking pathways in a joint control loop of the stick insect Carausius morosus. J Exp Biol 151:133–160

    Google Scholar 

  • Büschges A (1994) The physiology of sensory cells in the ventral scoloparium of the stick insect femoral chordotonal organ. J Exp Biol 189:285–292

    PubMed  Google Scholar 

  • Büschges A (1995) Plasticity of sensori-motor networks that control posture and movement of insect leg joints. Verh Dtsch Zool Ges 88(2):139–152

    Google Scholar 

  • Büschges A, Wolf H (1995) Nonspiking local interneurons in insect leg motor control. I. Common layout and species-specific response properties of femur-tibia joint control pathways in stick insect and locust. J Neurophysiol 73:1843–1860

    Article  Google Scholar 

  • Coillot JP, Boistel J (1968) Localisation et description des récepteurs à l'étirement au niveau de l'articulation tibio-fémorale de la patte sauteuse du criquet Schistocerca gregaria. J Insect Physiol 14:1661–1667

    Article  Google Scholar 

  • Debrodt B, Bässler U (1990) Responses of flexor motor neurons to stimulation of the femoral chordotonal organ of the phasmid Extatosoma tiaratum. Biol Cybernetics 94:101–119

    Google Scholar 

  • DiCaprio R, Wolf H, Büschges A (2002) Activity-dependent sensitivity of proprioceptive sensory neurons in the stick insect femoral Chordotonal organ. J Neurobiol 88:2387–2398

    CAS  Google Scholar 

  • Driesang RB, Büschges A (1993) The neural basis of catalepsy in the stick insect. J Comp Physiol A 173:445–454

    Article  Google Scholar 

  • Ebner I, Bässler U (1978) Zur Regelung der Stellung des Femur-Tibia-Gelenkes in Mesothorax der Wanderheuschrecke Schistocerca gregaria. Biol Cybern 29:83–96

    Article  Google Scholar 

  • Field L, Pflüger H-J (1989) The femoral chordotonal organ: a bifunctional orthopteran (Locusta migratoria) sense organ? Comp Biochem Physiol A 93:729–743

    Article  Google Scholar 

  • Füller H, Ernst A (1973) Die Ultrastruktur der femoralen Chordotonalorgane von Carausius morosus Br. Zool Jb Anat 91:74–601

    Google Scholar 

  • Gabriel JP, Scharstein H, Schmidt J, Büschges A (2003) Control of flexor motoneuron activity during single leg walking of the stick insect on an electronically controlled treadwheel. J Neurobiol 56:237–251

    Article  Google Scholar 

  • Goldammer J, Büschges A, Schmidt J (2012) Motoneurons, DUM cells, and sensory neurons in an insect thoracic ganglion: a tracing study in the stick insect Carausius morosus. J Comp Neurol 520:230–257

    Article  Google Scholar 

  • Hoffmann T, Koch UT, Bässler U (1985) Physiology of the femoral chordotonal organ in the stick insect, Cuniculina impigra. J Exp Biol 114:207–223

    Google Scholar 

  • Hofmann T, Bässler U (1982) Anatomy and physiology of trochanteral campaniform sensilla in the stick insect, Cuniculina impigra. Physiol Entomol 7:413–426

    Article  Google Scholar 

  • Hofmann T, Bässler U (1986) Response characteristics of single trochanteral campaniform sensilla in the stick insect, Cuniculina impigra. Physiol Entomol 11:17–21

    Article  Google Scholar 

  • Hofmann T, Koch UT (1985) Acceleration receptors in the femoral chordotonal organ of the stick insect, Cuniculina impigra. J Exp Biol 114:225–237

    Google Scholar 

  • Hooper SL, Büschges A (2017) In: Hooper SL, Büschges A (eds) Neurobiology of motor control - fundamental concepts and new directions. Wiley, Hoboken, NJ

    Chapter  Google Scholar 

  • Mentel T, Cangiano L, Grillner S, Büschges A (2008) Neuronal substrates for state- dependent changes in coordination between motoneuron pools during fictive locomotion in the lamprey spinal cord. J Neurosci 28:868–879

    Article  CAS  Google Scholar 

  • Orlovsky GN, Deliagina TG, Grillner S (1999) Neuronal control of locomotion: from Mollusc to man. Oxford University Press, New York, p 322

    Book  Google Scholar 

  • Sauer AE, Büschges A, Stein W (1997) Role of presynaptic inputs to proprioceptive afferents in tuning sensorimotor pathways of an insect joint control network. J Neurobiol 32(4):359–376

    Article  CAS  Google Scholar 

  • Sauer AE, Driesang RB, Büschges A, Bässler U (1995) Information processing in an invertebrate joint control loop. J Comp Physiol A 177:145–158

    Article  Google Scholar 

  • Sauer AE, Driesang RB, Büschges A, Bässler U (1996) Distributed processing on the basis of parallel and antagonistic pathways simulation of the femur-tibia control system in the stick insect. J Comput Neurosci 3:179–198

    Article  CAS  Google Scholar 

  • Sauer AE, Stein W (1999) Sensorimotor pathways processing vibratory signals from the femoral chordotonal organ of the stick insect. J Comp Physiol A 185:21–31

    Article  Google Scholar 

  • Storrer J, Bässler U, Mayer S (1986) Motoneurone im Meso- und Metathorakalganglion der Stabheuschrecke Carausius morosus. Zool Jahrb Abt Zool Physiol Tiere 90:359–374

    Google Scholar 

  • Wolf H, Bässler U, Spiess R, Kittmann R (2001) The femur-tibia control system in a proscopiid (Caelifera, Orthoptera): a test for assumptions on the functional basis and evolution of twig mimesis in stick insects. J Exp Biol 204:3815–3828

    CAS  PubMed  Google Scholar 

  • Zill SN, Chaudhry S, Büschges A, Schmitz J (2013) Directional specificity and encoding of muscle forces and loads by stick insect tibial campaniform sensilla, in particular by receptors with round cuticular caps. Arthropod Struct Dev 42:455–467

    Article  Google Scholar 

  • Zill SN, Neff D, Chaudhry S, Exter A, Schmitz J, Büschges A (2017) Effects of force detecting sense organs on muscle synergies are correlated with their response properties. Arthropod Struct Dev 46:564–578

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ansgar Büschges .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Büschges, A., Pflüger, HJ., Bässler, U. (2021). Catalepsy and Twig Mimesis in Insects and Its Neural Control. In: Sakai, M. (eds) Death-Feigning in Insects. Entomology Monographs. Springer, Singapore. https://doi.org/10.1007/978-981-33-6598-8_9

Download citation

Publish with us

Policies and ethics