Skip to main content

Effect of Turbulence Models on Steam Condensation in Transoṇic Flows

  • Conference paper
  • First Online:
Advances in Heat Transfer and Thermal Engineering

Abstract

Turbulence modelling plays an important role in the numerical prediction of nonequilibrium condensations in transonic flows. The present study evaluates the effect of four different turbulence models, namely, k - ε standard, RNG, realizable, and k - ω SST, on the condensation behaviour in transonic flows considering shock waves. The numerical simulation is compared to experimental data, which demonstrates that the k - ω SST model shows better performance than k - ω turbulence models in predicting the nonequilibrium condensation and shock waves in transonic flows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Yang, J.H. Walther, Y. Yan, C. Wen, CFD modeling of condensation process of water vapor in supersonic flows. Appl. Therm. Eng. 115, 1357–1362 (2017)

    Article  Google Scholar 

  2. Y. Yang, X. Zhu, Y. Yan, H. Ding, C. Wen, Performance of supersonic steam ejectors considering the nonequilibrium condensation phenomenon for efficient energy utilisation. Appl. Energy 242, 157–167 (2019)

    Article  Google Scholar 

  3. S. Dykas, M. Majkut, K. Smołka, M. Strozik, Study of the wet steam flow in the blade tip rotor linear blade cascade. Int. J. Heat Mass Transfer 120, 9–17 (2018)

    Article  Google Scholar 

  4. S.N.R. Abadi, R. Kouhikamali, K. Atashkari, Non-equilibrium condensation of wet steam flow within high-pressure thermo-compressor. Appl. Therm. Eng. 81, 74–82 (2015)

    Article  Google Scholar 

  5. Y. Yang, C. Wen, CFD modeling of particle behavior in supersonic flows with strong swirls for gas separation. Sep. Purif. Technol. 174, 22–28 (2017)

    Article  Google Scholar 

  6. D. Simpson, A. White, Viscous and unsteady flow calculations of condensing steam in nozzles. Int. J. Heat Fluid Flow 26, 71–79 (2005)

    Article  Google Scholar 

  7. K. Ariafar, D. Buttsworth, N. Sharifi, R. Malpress, Ejector primary nozzle steam condensation: Area ratio effects and mixing layer development. Appl. Therm. Eng. 71, 519–527 (2014)

    Article  Google Scholar 

  8. C. Wang, L. Wang, T. Zou, H. Zhang, Influences of area ratio and surface roughness on homogeneous condensation in ejector primary nozzle. Energy Convers. Manage. 149, 168–174 (2017)

    Article  Google Scholar 

  9. F. Mazzelli, F. Giacomelli, A. Milazzo, CFD modeling of condensing steam ejectors: Comparison with an experimental test-case. Int. J. Therm. Sci. 127, 7–18 (2018)

    Article  Google Scholar 

  10. A. Kantrowitz, Nucleation in very rapid vapor expansions. J. Chem. Phys. 19, 1097–1100 (1951)

    Article  Google Scholar 

  11. J. Young, The spontaneous condensation of steam in supersonic nozzle. Physico Chemical Hydrodynamics 3, 57–82 (1982)

    Google Scholar 

  12. ANSYS Fluent Theory Guide (ANSYS Inc., USA, 2017)

    Google Scholar 

  13. C. Wen, N. Karvounis, J.H. Walther, Y. Yan, Y. Feng, Y. Yang, An efficient approach to separate CO2 using supersonic flows for carbon capture and storage. Appl. Energy 238, 311–319 (2019)

    Article  Google Scholar 

  14. M.A.M Binnie, J. Green, D. Be, An electrical detector of condensation in high-velocity steam. Proc. R. Soc. Lond. A 181, 134–154 (1942)

    Google Scholar 

  15. C.A. Hunter, Experimental investigation of separated nozzle flows. J. Propul. Power 20, 527–532 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuying Yan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wen, C. et al. (2021). Effect of Turbulence Models on Steam Condensation in Transoṇic Flows. In: Wen, C., Yan, Y. (eds) Advances in Heat Transfer and Thermal Engineering . Springer, Singapore. https://doi.org/10.1007/978-981-33-4765-6_123

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-4765-6_123

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-4764-9

  • Online ISBN: 978-981-33-4765-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics