Skip to main content

Design of a Synchronous Generator of Permanent Magnets of Radial Flux for a Pico-Hydropower Station

  • Conference paper
  • First Online:
Advances and Applications in Computer Science, Electronics and Industrial Engineering

Abstract

The design of a radial flux permanent magnet synchronous generator is presented, which can produce a maximum power of 2 KW at 600 rpm. Once the design was made and its main characteristics determined, the analysis was carried out in MATLAB to observe the behavior of the generator in its operating range. SolidWorks was also used for the elaboration of 3D modeling and finally in ANSYS for its electromagnetic analysis. The objective of this design is that the generator can be installed in a Pico-Hydropower station located in an Ambato–Huachi–Pelileo irrigation channel, in the Tungurahua province in Ecuador. This will allow users to get benefit from electrical energy in difficult access areas. At the same time, when used in the irrigation channel, it will be able to illuminate the channel and thus allow to provide maintenance at any time of the day.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrés Romañach, A.d.: Diseño de generador de imanes permanentes para aerogeneradores en áreas marinas. Master’s thesis, Universidad Pontificia Comillas (2018)

    Google Scholar 

  2. Bouaziz, O., Jaafar, I., Ammar, F.B.: 3d finite element modelling and comparative performance analysis between axial and radial flux machines for micro wind turbine application. In: 2016 International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM), pp. 1–6. IEEE (2016). http://orcid.org/10.1109/CISTEM.2016.8066804

  3. Caiza, G., Garcia, C., Naranjo, J., Garcia, M.: Flexible robotic teleoperation architecture for intelligent oil fields. Heliyon 6(4) (2020). http://orcid.org/10.1016/j.heliyon.2020.e03833

  4. Caiza, G., Saeteros, M., Oñate, W., Garcia, M.: Fog computing at industrial level, architecture, latency, energy, and security: A review. Heliyon 6(4) (2020). http://orcid.org/10.1016/j.heliyon.2020.e03706

  5. Carrillo-Rosero, M., Claudio-Medina, C., Mayorga-Pardo, A.: Caracterización de un generador de flujo axial para aplicaciones en energía eólica. Ingenius. Revista de Ciencia y Tecnología (19), 19–28 (2018). http://orcid.org/10.17163/ings.n19.2018.02

  6. Chen, A., Nilssen, R., Nysveen, A.: Performance comparisons among radial-flux, multistage axial-flux, and three-phase transverse-flux pm machines for downhole applications. IEEE Trans. Ind. Appl. 46(2), 779–789 (2010). https://doi.org/10.1109/tia.2009.2039914

  7. Chen, Y., Fu, W.N., Ho, S.L., Liu, H.: A quantitative comparison analysis of radial-flux, transverse-flux, and axial-flux magnetic gears. IEEE Trans. Mag. 50(11),  1–4 (2014). https://doi.org/10.1109/tmag.2014.2327622

  8. Cortez, R.I., De la Cruz Soto, J., Hernandez, E., Durante, W.: Evaluating the broad range performance of a radial-flux pmsg. IEEE Latin Am. Trans. 17(11), 1909–1917 (2019). http://orcid.org/10.1109/TLA.2019.8986431

  9. Espín, M., Cumandá, L.: Soberanía energética en el Ecuador. Master’s thesis, Flacso, Quito-Ecuador (2011)

    Google Scholar 

  10. Faiz, J., Valipour, Z., Shokri-Kojouri, M., Khan, M.A.: Design of a radial flux permanent magnet wind generator with low coercive force magnets. In: 2016 2nd International Conference on Intelligent Energy and Power Systems (IEPS), pp. 1–7. IEEE (2016). http://orcid.org/10.1109/IEPS.2016.7521864

  11. Faqih, M.R., Sutedjo, S., Wahjono, E.: Design and fabrication of a radial flux permanent magnet synchronous generator. In: 2019 International Electronics Symposium (IES), pp. 644–649. IEEE (2019). http://orcid.org/10.1109/ELECSYM.2019.8901620

  12. Ibañez Solis, L.E.: Diseño y construcción de una mini-turbina hidráulica tipo MICHELL–BANKI para ser instalada en canales primarios abiertos y generar energía mecánica. B.S. thesis, Universidad Técnica de Ambato. Facultad de Ingeniería Civil y Mecánica (2019)

    Google Scholar 

  13. Johnson, M., Gardner, M.C., Toliyat, H.A., Englebretson, S., Ouyang, W., Tschida, C.: Design, construction, and analysis of a large-scale inner stator radial flux magnetically geared generator for wave energy conversion. IEEE Trans. Ind. Appl. 54(4), 3305–3314 (2018). https://doi.org/10.1109/TIA.2018.2828383

  14. Jokinen, T. et al.: Design of Rotating Electrical Machines. Wiley (2013)

    Google Scholar 

  15. Madhavan, R., Fernandes, B.: Comparative analysis of axial flux srm topologies for electric vehicle application. In: 2012 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), pp. 1–6. IEEE (2012). http://orcid.org/10.1109/PEDES.2012.6484421

  16. Mhlambi, B., Kusakana, K., Raath, J.: Voltage and frequency control of isolated pico-hydro system. In: 2018 Open Innovations Conference (OI), pp. 246–250. IEEE (2018). http://orcid.org/10.1109/oi.2018.8535603

  17. Montalvo, W., Escobar-Naranjo, J., Garcia, C., Garcia, M.: Low-cost automation for gravity compensation of robotic arm. Appl. Sci. (Switzerland) 10(11) (2020). http://orcid.org/10.3390/app10113823

  18. Montalvo, W., Garcia, C., Naranjo, J., Ortiz, A., Garcia, M.: Tele-operation system for mobile robots using in oil & gas industry [sistema de tele-operación para robots móviles en la industria del petróleo y gas]. RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao 2020(E29), 351–365 (2020), cited By 0

    Google Scholar 

  19. Nourifard, S., Hasheminejad, S., Jami, M.: Design and simulation of a conical rotor axial-radial flux permanent magnet generator of power 1.1 kw for micro wind turbines. Revista Innovaciencia 7(2) (2019)

    Google Scholar 

  20. Ortiz-Garcia, E., Iracheta-Cortez, R.: Analyzing the power quality of a rf-pmsg by considering different types of windings. In: 2019 IEEE 39th Central America and Panama Convention (CONCAPAN XXXIX), pp. 1–6. IEEE (2019). http://orcid.org/10.1109/concapanxxxix47272.2019.8977101

Download references

Acknowledgements

The authors thank the invaluable contribution of the Technological University Indoamerica in Ambato—Ecuador, for their support in carrying out this research, in the execution of the project “Estudio de Energía Eléctrica de Baja Potencia en los Canales de Riego como Fuentes Hídricas”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myriam Cumbajin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Flores, E., Cumbajin, M., Sanchez, P. (2021). Design of a Synchronous Generator of Permanent Magnets of Radial Flux for a Pico-Hydropower Station. In: García, M.V., Fernández-Peña, F., Gordón-Gallegos, C. (eds) Advances and Applications in Computer Science, Electronics and Industrial Engineering. Advances in Intelligent Systems and Computing, vol 1307. Springer, Singapore. https://doi.org/10.1007/978-981-33-4565-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-4565-2_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-4564-5

  • Online ISBN: 978-981-33-4565-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics