Advertisement

Iris Recognition

  • S. M. Mahbubur RahmanEmail author
  • Tamanna Howlader
  • Dimitrios Hatzinakos
Chapter
Part of the Cognitive Intelligence and Robotics book series (CIR)

Abstract

The authenticity and reliability of iris-based biometric identification systems for large populations are well-known. “Iris recognition” aims to identify persons using the visible intricate structure of minute characteristics such as furrows, freckles, crypts, and coronas that exist on a thin circular diaphragm lying between the cornea and the lens, called the “iris”. Iris recognition-based biometric identification technique has attained significant interests mainly due to its noninvasive characteristics and the lifetime permanence of iris patterns. Iris-based identity verification system is found to be commercially deployed in many airports for border control. Recently, the signature of iris is recommended to be embedded in smart e-passport or national ID cards [1].

References

  1. 1.
    M. Abid, S. Kanade, D. Petrovska-Delacrtaz, B. Dorizzi, H. Afifi, Iris based authentication mechanism for e-passports, in Proceedings of the 2nd International Workshop on Security and Communication Networks, Karlstad, Sweden (2010), pp. 1–5Google Scholar
  2. 2.
    B.A. Biswas, S.S.I. Khan, S.M.M. Rahman, Discriminative masking for non-cooperative IrisCode recognition, in Proceedings of the International Conference on Electrical and Computer Engineering, Dhaka, Bangladesh (2014), pp. 124–127Google Scholar
  3. 3.
    V.N. Boddeti, B.V.K.V. Kumar, Extended-depth-of-field iris recognition using unrestored wavefront-coded imagery. IEEE Trans. Syst. Man Cybern.—Part A 40(3), 495–508 (2010)Google Scholar
  4. 4.
    W.W. Boles, B. Boashash, A human identification technique using images of the iris and wavelet transform. IEEE Trans. Signal Process. 46(4), 1185–1188 (1998)CrossRefGoogle Scholar
  5. 5.
    R.S. Choras, Iris-based person identification using Gabor wavelets and moments, in International Conference on Biometrics and Kansei Engineering, Cieszyn, Poland (2009), pp. 55–59Google Scholar
  6. 6.
    C.T. Chou, S.W. Shih, W.S. Chen, V.W. Cheng, D.Y. Chen, Non-orthogonal view iris recognition system. IEEE Trans. Circuits Syst. Video Technol. 20(3), 417–430 (2010)Google Scholar
  7. 7.
    J. Daugman, High confidence visual recognition of persons by a test of statistical independence. IEEE Trans. Pattern Anal. Mach. Intell. 15(11), 1148–1161 (1993)Google Scholar
  8. 8.
    J. Daugman, Probing the uniqueness and randomness of IrisCodes: results from 200 billion iris pair comparisons. Proc. IEEE 94(11), 1927–1935 (2006)CrossRefGoogle Scholar
  9. 9.
    S. Dey, D. Samanta, Iris data indexing method using Gabor energy features. IEEE Trans. Inf. Forensics Secur. 7(4), 1192–1203 (2012)CrossRefGoogle Scholar
  10. 10.
    W. Dong, Z. Sun, T. Tan, Iris matching based on personalized weight map. IEEE Trans. Pattern Anal. Mach. Intell. 33(9), 1744–1757 (2011)Google Scholar
  11. 11.
    L. Flom, A. Safir, Iris recognition system. U.S. Patent (1987). No. 4641394Google Scholar
  12. 12.
    K. Hollingsworth, K.W. Bowyer, P.J. Flynn, Improved iris recognition through fusion of Hamming distance and fragile bit distance. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2465–2476 (2011)Google Scholar
  13. 13.
    K. Hollingsworth, T. Peters, K.W. Bowyer, P.J. Flynn, Iris recognition using signal-level fusion of frames from video. IEEE Trans. Inf. Forensics Secur. 4(4), 837–848 (2009)CrossRefGoogle Scholar
  14. 14.
    K.P. Hollingsworth, K.W. Bowyer, P.J. Flynn, The best bits in an iris code. IEEE Trans. Pattern Anal. Mach. Intell. 31(6), 964–973 (2009)Google Scholar
  15. 15.
    R.W. Ives, R.P. Broussard, L.R. Kennell, R.N. Rakvic, D.M. Etter, Iris recognition using the ridge energy direction (RED) algorithm, in Asilomar Conference on Signals, Systems and Computers (Pacific Grove, CA, 2008), pp. 1219–1223Google Scholar
  16. 16.
    B.J. Kang, K.R. Park, Real-time image restoration for iris recognition systems. IEEE Trans. Syst. Man Cybern.—Part B 37(6), 1555–1566 (2007)Google Scholar
  17. 17.
    A.W.K. Kong, D. Zhang, M.S. Kamel, An analysis of IrisCode. IEEE Trans. Image Process. 19(2), 522–532 (2010)MathSciNetCrossRefGoogle Scholar
  18. 18.
    L. Ma, T. Tan, Y. Wang, D. Zhang, Personal identification based on iris texture analysis. IEEE Trans. Pattern Anal. Mach. Intell. 25(12), 1519–1533 (2003)Google Scholar
  19. 19.
    L. Ma, T. Tan, Y. Wang, D. Zhang, Local intensity variation analysis for iris recognition. Pattern Recognit. 37, 1287–1298 (2004)CrossRefGoogle Scholar
  20. 20.
    L. Masek, Recognition of human Iris patterns for biometric identification. Bachelor of Engineering Thesis. The University of Western Australia, Australia, 2003Google Scholar
  21. 21.
    H. Mehrotra, G.S. Badrinath, B. Majhi, P. Gupta, An efficient iris recognition using local feature descriptor, in Proceedigns of the IEEE International Conference on Image Processing, Cairo, Egypt (2009), pp. 1957–1960Google Scholar
  22. 22.
    D.M. Monro, S. Rakshit, D. Zhang, DCT-based iris recognition. IEEE Trans. Pattern Anal. Mach. Intell. 29(4), 586–595 (2007)Google Scholar
  23. 23.
    S.P. Narote, A.S. Narote, L.M. Waghmare, M.B. Kokare, A.N. Gaikwad, An iris recognition based on dual tree complex wavelet transform, in Proceedigns of the IEEE TECCON, Taipei, Taiwan (2007), pp. 1–4Google Scholar
  24. 24.
    W. Pedrycz, Knowledge-Based Clustering: From Data to Information Granules (Wiley, Hoboken, NJ, 2005)Google Scholar
  25. 25.
    H. Proenca, S. Filipe, R. Santos, J. Oliveira, L.A. Alexandre, The UBIRIS.v2: a database of visible wavelength iris images captured on-the-move and at-a-distance. IEEE Trans. Pattern Anal. Mach. Intell. 32(8), 1529–1535 (2010)Google Scholar
  26. 26.
    S.M.M. Rahman, M.M. Reza, Q.M.Z. Hasani, Low-complexity iris recognition method using 2D Gauss-Hermite moments, in Proceedings of the International Symposium on Image and Signal Processing and Analysis, Trieste, Italy (2013), pp. 135–139Google Scholar
  27. 27.
    Y. Si, J. Mei, H. Gao, Novel approaches to improve robustness, accuracy and rapidity of iris recognition systems. IEEE Trans. Ind. Inform. 8(1), 110–117 (2012)CrossRefGoogle Scholar
  28. 28.
  29. 29.
    V. Velisavljevic, Low-complexity iris coding and recognition based on directionlets. IEEE Trans. Inf. Forensics Secur. 4(3), 410–417 (2009)CrossRefGoogle Scholar
  30. 30.
    R.P. Wildes, Iris recognition: An emerging biometric technology. Proc. IEEE 85(9), 1348–1363 (1997)CrossRefGoogle Scholar
  31. 31.
    J. Zuo, N.A. Schmid, On a methodology for robust segmentation of nonideal iris images. IEEE Trans. Syst. Man Cybern.—Part B 40(3), 703–718 (2010)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • S. M. Mahbubur Rahman
    • 1
    Email author
  • Tamanna Howlader
    • 2
  • Dimitrios Hatzinakos
    • 3
  1. 1.Department of Electrical and Electronic EngineeringBangladesh University of Engineering and TechnologyDhakaBangladesh
  2. 2.Institute of Statistical Research and TrainingUniversity of DhakaDhakaBangladesh
  3. 3.Department of Electrical and Computer EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations