Fingerprint Classification

  • S. M. Mahbubur RahmanEmail author
  • Tamanna Howlader
  • Dimitrios Hatzinakos
Part of the Cognitive Intelligence and Robotics book series (CIR)


Fingerprints are the impression of minute ridges and valleys that are found on the fingertips of every person. Among all the biometric signatures, fingerprint maintains one of the highest levels of accuracy, reliability, and consistency, and hence has been extensively used for identifying individuals.


  1. 1.
    F. Belhadj, S. Akrouf, S. Harous, S.A. Aoudia, Efficient fingerprint singular points detection algorithm using orientation-deviation features. J. Electron. Imaging 24(3), 033,016–1–033,016–13 (2015)Google Scholar
  2. 2.
    H. Chen, L. Pang, J. Liang, E. Liu, J. Tian, Fingerprint singular point detection based on multiple-scale orientation entropy. IEEE Signal Process. Lett. 18(11), 679–682 (2011)CrossRefGoogle Scholar
  3. 3.
    L. Fan, S. Wang, H. Wang, T. Guo, Singular points detection based on zero-pole model in fingerprint images. IEEE Trans. Pattern Anal. Mach. Intell. 30(6), 929–940 (2008)Google Scholar
  4. 4.
    J.M. Guo, Y.F. Liu, J.Y. Chang, J.D. Lee, Fingerprint classification based on decision tree from singular points and orientation field. Expert Syst. Appl. 41, 752–764 (2014)CrossRefGoogle Scholar
  5. 5.
    X. Guo, E. Zhu, J. Yin, A fast and accurate method for detecting fingerprint reference point. Neural Comput. Appl. 29(1), 21–31 (2018)CrossRefGoogle Scholar
  6. 6.
    Z. Haddad, A. Beghdadi, A. Serir, A. Mokraoui, Fingerprint identification using Radon transform, in Proceedings of the International Workshops on Image Processing Theory, Tools and Applications, Sousse, Tunisia (2008), pp. 1–7Google Scholar
  7. 7.
    G.B. Iwasokun, S.O. Ojo, Review and evaluation of fingerprint singular point detection algorithms. Br. J. Appl. Sci. Technol. 35(4), 4918–4938 (2014)CrossRefGoogle Scholar
  8. 8.
    A.K. Jain, J. Feng, Latent fingerprint matching. IEEE Trans. Pattern Anal. Mach. Intell. 33(1), 88–100 (2011)Google Scholar
  9. 9.
    A.K. Jain, S. Prabhakar, L. Hong, S. Pankanti, Filterbank-based fingerprint matching. IEEE Trans. Image Process. 9(5), 846–859 (2000)CrossRefGoogle Scholar
  10. 10.
    C. Jin, H. Kim, Pixel-level singular point detection from multi-scale Gaussian filtered orientation field. Pattern Recognit. 43, 3879–3890 (2010)CrossRefGoogle Scholar
  11. 11.
    M. Kawagoe, A. Tojo, Fingerprint pattern classification. Pattern Recognit. 17(3), 295–303 (1984)CrossRefGoogle Scholar
  12. 12.
    M.S. Khalil, D. Muhammad, Q.A. Nuzaili, Fingerprint verification using the texture of fingerprint image in Proceedings of the International Conference on Machine Vision, Dubai, UAE (2009), pp. 27–31Google Scholar
  13. 13.
    J. Khodadoust, A.M. Khodadoust, Fingerprint indexing based on minutiae pairs and convex core point. Pattern Recognit. 67, 110–126 (2017)CrossRefGoogle Scholar
  14. 14.
    C. Klimanee, D.T. Nguyen, Classification of fingerprints using singular points and their principal axes. in Proceedigns of the International Conference on Image Processing, Singapore (2004), pp. 849–852Google Scholar
  15. 15.
    T.H. Le, H.T. Van, Fingerprint reference point detection for image retrieval based on symmetry and variation. Pattern Recognit. 45, 3360–3372 (2012)CrossRefGoogle Scholar
  16. 16.
    M. Liu, Fingerprint classification based on Adaboost learning from singularity features. Pattern Recognit. 43, 1062–1070 (2010)CrossRefGoogle Scholar
  17. 17.
    M. Liu, P.T. Yap, Invariant representation of orientation fields for fingerprint indexing. Pattern Recognit. 45, 2532–2542 (2012)CrossRefGoogle Scholar
  18. 18.
    A. Muñoz-Briseño, A. Gago-Alonso, J. Hernández-Palancar, Fingerprint indexing with bad quality areas. Expert Syst. Appl. 40, 1839–1846 (2013)Google Scholar
  19. 19.
    F. Magalhaes, H.P. Oliveira, A. Campilho, Singular point detection competetion database (2010).
  20. 20.
    D. Peralta, I. Triguero, S. Garcia, Y. Saeys, J.M. Benitez, F. Herrera, Distributed incremental fingerprint identification with reduced database penetration rate using a hierarchical classification based on feature fusion and selection. Knowl.-Based Syst. 126, 91–103 (2017)CrossRefGoogle Scholar
  21. 21.
    H.A. Qader, A.R. Ramli, S.A. Haddad, Fingerprint recognition using Zernike moments. Int. Arab J. Inf. Technol. 4(4), 372–376 (2007)Google Scholar
  22. 22.
    B.G. Sherlock, D.M. Monro, A model for interpreting fingerprint topology. Pattern Recognit. 26(7), 1047–1055 (1993)CrossRefGoogle Scholar
  23. 23.
    H.R. Su, K.Y. Chen, W.J. Wong, S.H. Lai, A deep learning approach towards pore extraction for high-resolution fingerprint recognition, in Proceedings of the International Conference on Acoustics, Speech and Signal Processing, New Orleans, LA (2017), pp. 2057–2061Google Scholar
  24. 24.
    The Henry classification system. Technical report, International Biometric Group, New York (2003)Google Scholar
  25. 25.
    L. Wang, M. Dai, Application of a new type of singular points in fingerprint classification. Pattern Recognit. Lett. 28, 1640–1650 (2007)CrossRefGoogle Scholar
  26. 26.
    R. Wang, C. Han, T. Guo, A novel fingerprint classification method based on deep learning, in Proceedings of the International Conference on Pattern Recognition, Cancun, Mexico (2016), pp. 931–936Google Scholar
  27. 27.
    C.I. Watson, C.L. Wilson, NIST special database 4, fingerprint database (1992).
  28. 28.
    J.C. Yang, D.S. Park, A fingerprint verification algorithm using tessellated invariant moment features. Neurocomputing 71, 1939–1946 (2008)CrossRefGoogle Scholar
  29. 29.
    Q. Zhang, H. Yan, Fingerprint classification based on extraction and analysis of singularities and pseudo ridges. Pattern Recognit. 37, 2233–2243 (2004)CrossRefGoogle Scholar
  30. 30.
    E. Zhu, X.Y.J. Guo, Walking to singular points of fingerprints. Pattern Recognit. 56(C), 116–128 (2016)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • S. M. Mahbubur Rahman
    • 1
    Email author
  • Tamanna Howlader
    • 2
  • Dimitrios Hatzinakos
    • 3
  1. 1.Department of Electrical and Electronic EngineeringBangladesh University of Engineering and TechnologyDhakaBangladesh
  2. 2.Institute of Statistical Research and TrainingUniversity of DhakaDhakaBangladesh
  3. 3.Department of Electrical and Computer EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations