Advertisement

Introduction

  • S. M. Mahbubur RahmanEmail author
  • Tamanna Howlader
  • Dimitrios Hatzinakos
Chapter
Part of the Cognitive Intelligence and Robotics book series (CIR)

Abstract

We live in a world that is built upon patterns. What is a pattern? The Oxford dictionary defines a pattern as a repeated decorative design. In the language of pattern recognition, however, a pattern has been described as an entity that could be given a name [36]. Thus, the bird, boat, buildings, and people that we see in Fig. 1.1 are all examples of patterns. Recognizing patterns in the environment is one of the fundamental signs of intelligent behavior.

References

  1. 1.
  2. 2.
    A. Abbas, M. Khalil, S. Abdel Hay, H.M.A. Fahmy, Illumination invariant face recognition in logarithm discrete cosine transform domain, in Proceedings of the IEEE International Conference on Image Processing, Cairo, Egypt (2009), pp. 4157–4160Google Scholar
  3. 3.
    T. Ahonen, A. Hadid, P. M., Face description with local binary patterns: application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 28(12), 2037–2041 (2006)Google Scholar
  4. 4.
    A. Albiol, D. Monzo, A. Martin, J. Sastre, A. Albiol, Face recognition using HOGEBGM. Pattern Recognit. Lett. 29(10), 1537–1543 (2011)CrossRefGoogle Scholar
  5. 5.
    F. Alonso-Fernandez, P. Tome-Gonzalez, V. Ruiz-Albacete, J. Ortega-Garcia, Iris recognition based on SIFT features, in Proceedings of the International Conference on Biometrics, Identity and Security, Tampa, FL, USA (2009), pp. 1–8Google Scholar
  6. 6.
    A. Aravindan, S.M. Anzar, Robust partial fingerprint recognition using wavelet SIFT descriptors. Pattern Anal. Appl. 20(4), 963–979 (2017)MathSciNetCrossRefGoogle Scholar
  7. 7.
    H. Bay, A. Ess, T. Tuytelaars, L.V. Gool, Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)CrossRefGoogle Scholar
  8. 8.
    C. Belcher, Y. Du, Region-based SIFT approach to iris recognition. Opt. Lasers Eng. 47(1), 139–147 (2009)CrossRefGoogle Scholar
  9. 9.
    P.N. Belhumeur, J.P. Hespanha, D.J. Kreigman, Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997)Google Scholar
  10. 10.
    S. Berretti, B.B. Amor, M. Daoudi, A. del Bimbo, 3D facial expression recognition using SIFT descriptors of automatically detected keypoints. Vis. Comput. 27, 1021–1036 (2011)CrossRefGoogle Scholar
  11. 11.
    A. Caliskan, O.F. Ertugrul, Wavelet transform based fingerprint recognition, in Proceedings of the Signal Processing and Communications Applications Conference, Malatya, Turkey (2015) pp. 786–793Google Scholar
  12. 12.
    L. Cament, F. Galdames, K. Bowyer, C.A. Perez, Face recognition under pose variation with active shape model to adjust gabor filter kernels and to correct feature extraction location, in Proceedings of the IEEE International Conference Workshops on Automatic Face and Gesture Recognition, Ljubljana, Slovenia (2015), pp. 1–6Google Scholar
  13. 13.
    P. Carcagni, M.D. Coco, M. Leo, C. Distante, Facial expression recognition and histograms of oriented gradients: a comprehensive study. SpringerPlus 4(645), 1–25 (2015)Google Scholar
  14. 14.
    R. Carro, J. Larios, E. Huerta, R. Caporal, F. Cruz, Face recognition using SURF, in Lecture Notes in Computer Science: Intelligent Computing Theories and Methodologies, vol. 9225 (2015), pp. 316–326Google Scholar
  15. 15.
    N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, in Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA (2005), pp. 1–8Google Scholar
  16. 16.
    N. Dalal, B. Triggs, Half iris biometric system based on HOG and LIOP, in Proceedings of the International Conference on Frontiers of Signal Processing, Warsaw, Poland (2016), pp. 99–103Google Scholar
  17. 17.
    M. Dale, M.A. Joshi, M. Sahu, DCT feature based fingerprint recognition, in Proceedings of the International Conference on Intelligent and Advanced Systems, Kuala Lumpur, Malaysia (2007), pp. 611–615Google Scholar
  18. 18.
    J. Daugman, High confidence visual recognition of persons by a test of statistical independence. IEEE Trans. Pattern Anal. Mach. Intell. 25(9), 1148–1161 (1993)Google Scholar
  19. 19.
    J. Daugman, How iris recognition works? IEEE Trans. Circuits Syst. Video Technol. 14(1), 21–30 (2004)CrossRefGoogle Scholar
  20. 20.
    C.L. Deepika, A. Kandaswamy, P. Gupta, Orthogonal moments for efficient feature extraction from line structure based biometric images. Lecture Notes in Computer Science: Intelligent Computing Theories and Applications, vol. 7390 (2012), pp. 656–663Google Scholar
  21. 21.
    O. Deniz, G. Bueno, J. Salido, F.D. la Torre, Face recognition using histograms of oriented gradients. Pattern Recognit. Lett. 32(12), 1598–1603 (2011)CrossRefGoogle Scholar
  22. 22.
    J.J. DiCarlo, D. Zoccolan, N. Rust, How does the brain solve visual object recognition? Neuron 73(3), 415–434 (2012)CrossRefGoogle Scholar
  23. 23.
    S. Farokhi, S.M. Shamsuddin, U. Sheikh, J. Flusser, M. Khansari, K. Jafari-Khouzani, Near infrared face recognition by combining Zernike moments and undecimated discrete wavelet transform. Digit. Signal Process. 31, 13–27 (2014)CrossRefGoogle Scholar
  24. 24.
    J. Flusser, T. Suk, B. Zitova, 2D and 3D Image Analysis by Moments (Wiley, New York, 2017)zbMATHGoogle Scholar
  25. 25.
    J. Flusser, B. Zitova, T. Suk, Moments and Moment Invariants in Pattern Recognition (Wiley, New York, 2009)CrossRefGoogle Scholar
  26. 26.
    C. Geng, X. Jiang, Face recognition using SIFT features, in Proceedings of the IEEE International Conference on Image Processing, Cairo, Egypt (2009), pp. 3313–3316Google Scholar
  27. 27.
    S.O. Gonzaga, A method for fingerprint image identification based on Gabor filter and power spectrum. Pattern Recognit. Image Anal. 20(2), 201–209 (2010)CrossRefGoogle Scholar
  28. 28.
    Q. Haq, M. Javed, Q. Haq, Efficient and robust approach of iris recognition through Fisher linear discriminant analysis method and principal component analysis method, in Proceedings of the IEEE International Multitopic Conference, Karachi, Pakistan (2008), pp. 218–225Google Scholar
  29. 29.
    M. Hassaballah, A. Abdelmgeid, H. Alshazly, Image features detection, description and matching, Studies in Computational Intelligence, vol. 630 (Springer, Berlin, 2016), pp. 11–45Google Scholar
  30. 30.
    S. He, C. Zhang, P. Hao, Clustering-based descriptors for fingerprint indexing and fast retrieval, in Lecture Notes in Computer Science: Asian Conference on Computer Vision 2009, vol. 5994 (2010), pp. 354–363Google Scholar
  31. 31.
    C. Hermite, Sur un Nouveau Developpement en Serie des Fonctions. Gauthier-Villars (in French) (1864)Google Scholar
  32. 32.
    M.K. Hu, Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory 8(2), 179–187 (1962)CrossRefGoogle Scholar
  33. 33.
    P. Huang, C. Chiang, J. Liang, Iris recognition using Fourier-wavelet features, in Lecture Notes in Computer Science: Audio- and Video-Based Biometric Person Authentication, vol. 3546 (2005), pp. 14–22Google Scholar
  34. 34.
    S.M. Imran, S.M.M. Rahman, D. Hatzinakos, Differential components of discriminative 2D Gaussian-Hermite moments for recognition of facial expressions. Pattern Recognit. 56, 100–115 (2016)CrossRefGoogle Scholar
  35. 35.
    A. Jain, S. Prabhakar, L. Hong, S. Pankanti, Filterbank-based fingerprint matching. IEEE Trans. Image Process. 9(5), 846–859 (2000)CrossRefGoogle Scholar
  36. 36.
    A.K. Jain, R.P.W. Duin, J. Mao, Statistical pattern recognition: a review. IEEE Trans. Pattern Anal. Mach. Intell. 22(1), 4–37 (2000)Google Scholar
  37. 37.
    R.A. Johnson, D.W. Wichern, Applied Multivariate Statistical Analysis, 1st edn. (Prentice-Hall, Upper Saddle River, 1982)zbMATHGoogle Scholar
  38. 38.
    J.K. Kamarainen, Gabor features in image analysis, in Proceedings of the IEEE International Conference on Image Processing Theory, Tools and Applications, Istanbul, Turkey (2012), pp. 1–2Google Scholar
  39. 39.
    S. Kittusamy, V. Chakrapani, Facial expressions recognition using eigenfaces. J. Comput. Sci. 8(10), 1674–1679 (2012)CrossRefGoogle Scholar
  40. 40.
    J. Krizaj, V. Struc, N. Pavesic, Adaptation of SIFT features for face recognition under varying illumination, in Proceedings of the International Convention MIPRO, Opatija, Croatia (2016), pp. 691–694Google Scholar
  41. 41.
    S.M. Lajevardi, Z.M. Hussain, Higher order orthogonal moments for invariant facial expression recognition. Digit. Signal Process. 20(6), 1771–1779 (2010)CrossRefGoogle Scholar
  42. 42.
    C. Li, W. Zhou, S. Yuan, Iris recognition based on a novel variation of local binary pattern. Vis. Comput. 31(10), 1419–1429 (2015)CrossRefGoogle Scholar
  43. 43.
    H. Li, J. Ellis, L. Zhang, S.F. Chang, PatternNet: visual pattern mining with deep neural network, in Proceedings of the ACM International Conference on Multimedia Retrieval, Yokohama, Japan (2018), pp. 291–299Google Scholar
  44. 44.
    W.S. Lin, Y.L. Wu, W.C. Hung, C.Y. Tang, A study of real-time hand gesture recognition using SIFT on binary images, Smart Innovation, Systems and Technologies: Advances in Intelligent Systems and Applications, vol. 21 (2013), pp. 235–246Google Scholar
  45. 45.
    C. Liu, D. Dai, Face recognition using dual tree complex wavelet features. IEEE Trans. Image Process. 18(11), 2593–2599 (2009)MathSciNetCrossRefGoogle Scholar
  46. 46.
    D. Lowe, Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)CrossRefGoogle Scholar
  47. 47.
    L. Ma, T. Tan, Y. Wang, D. Zhang, Local intensity variation analysis for iris recognition. Pattern Recognit. 37, 1287–1298 (2004)CrossRefGoogle Scholar
  48. 48.
    A. Maqueda, C. del Blanco, F. Jaureguizar, N. Garcia, Human-computer interaction based on visual hand-gesture recognition using volumetric spatiograms of local binary patterns. Comput. Vis. Image Underst. 141, 126–137 (2015)CrossRefGoogle Scholar
  49. 49.
    H. Mehrotra, P. Sa, B. Majhi, Fast segmentation and adaptive SURF descriptor for iris recognition. Math. Comput. Model. 58(1–2), 132–146 (2013)CrossRefGoogle Scholar
  50. 50.
    A. Misra, A. Takashi, T. Okatani, K. Deguchi, Hand gesture recognition using histogram of oriented gradients and partial least squares regression, in Proceedings of the IAPR Conference on Machine Vision Applications, Nara, Japan (2011), pp. 479–482Google Scholar
  51. 51.
    R. Mukundan, S. Ong, P. Lee, Image analysis by Tchebichef moments. IEEE Trans. Image Process. 10(9), 1357–1364 (2001)MathSciNetCrossRefGoogle Scholar
  52. 52.
    R. Mukundan, K. Ramakrishnan, Moment Functions in Image Analysis: Theory and Applications (World Scientific, Singapore, 1998)CrossRefGoogle Scholar
  53. 53.
    A. Nabatchian, E. Abdel-Raheem, M. Ahmadi, Human face recognition using different moment invariants: a comparative study, in Proceedings of the Congress on Image and Signal Processing, Sanya, Hainan, China (IEEE, 2008), pp. 661–666Google Scholar
  54. 54.
    L. Nanni, A. Lumini, Local binary patterns for a hybrid fingerprint matcher. Pattern Recognit. 41, 3461–3466 (2008)CrossRefGoogle Scholar
  55. 55.
    L. Nanni, A. Lumini, S. Brahnam, Survey on LBP based texture descriptors for image classification. Expert Syst. Appl. 39, 3634–3641 (2012)CrossRefGoogle Scholar
  56. 56.
    T. Ojala, M. Pietikainen, T. Maenpaa, Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)Google Scholar
  57. 57.
    G. Papakostas, Over fifty years of image moments and moment invariants, in Moments and Moment Invariants: Theory and Applications (Science Gate Publishing, 2014), pp. 3–32Google Scholar
  58. 58.
    C. Park, H. Park, Fingerprint classification using fast Fourier transform and nonlinear discriminant analysis. Pattern Recognit. 38(4), 495–503 (2005)CrossRefGoogle Scholar
  59. 59.
    M. Pawlak, Image Analysis by Moments: Reconstruction and Computational Aspects (Oficyna Wydawn. Politechn., Wrocklaw, 2006)zbMATHGoogle Scholar
  60. 60.
    P. Premaratne, Human Computer Interaction Using Hand Gestures (Springer, Singapore, 2014)CrossRefGoogle Scholar
  61. 61.
    H. Qader, A. Ramli, S. Al-Haddad, Fingerprint recognition using Zernike moments. Int. Arab J. Inf. Technol. 4(4), 372–376 (2007)Google Scholar
  62. 62.
    S.M.M. Rahman, S.P. Lata, T. Howlader, Bayesian face recognition using 2D Gaussian-Hermite moments. EURASIP J. Image Video Process. 2015(35), 1–20 (2015)Google Scholar
  63. 63.
    S.M.M. Rahman, M.M. Reza, Q. Hassani, Low-complexity iris recognition method using 2D Gauss-Hermite moments, in Proceedings of the International Symposium Image and Signal Processing and Analysis, Trieste, Italy (2013), pp. 142–146Google Scholar
  64. 64.
    E. Salahat, M. Qasaimeh, Recent advances in features extraction and description algorithms: a comprehensive survey, in Proceedings of the International Conference Industrial Technology, Toronto, ON, Canada (2017), pp. 1059–1063Google Scholar
  65. 65.
    A.K. Sao, B. Yegnanarayana, On the use of phase of the Fourier transform for face recognition under variations in illumination. Signal Image Video Process. 4(3), 353–358 (2010)CrossRefGoogle Scholar
  66. 66.
    E.S. Serra, Understanding human-centric images: from geometry to fashion. Ph.D. thesis, BarcelonaTech: Automatica, Robotica I Visio, Universitat Politecnica de Catalunya (2015)Google Scholar
  67. 67.
    T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, T. Poggio, Robust object recognition with cortex-like mechanisms. IEEE Trans. Pattern Anal. Mach. Intell. 29(3)Google Scholar
  68. 68.
    C. Shan, S. Gong, P. McOwan, Facial expression recognition based on local binary patterns: a comprehensive study. Image Vis. Comput. 27(6), 803–816 (2009)CrossRefGoogle Scholar
  69. 69.
    Y. Sheng, L. Shen, Orthogonal Fourier-Mellin moments for invariant pattern recognition. J. Opt. Soc. Am. 11(6), 1748–1757 (1994)CrossRefGoogle Scholar
  70. 70.
    M. Siddiqi, R. Ali, A. Khan, Y. Park, S. Lee, Human facial expression recognition using stepwise linear discriminant analysis and hidden conditional random fields. IEEE Trans. Image Process. 24(4), 1386–1398 (2015)MathSciNetCrossRefGoogle Scholar
  71. 71.
    K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, in Proceedings of the International Conference on Learning RepresentationsGoogle Scholar
  72. 72.
    H. Soyel, H. Demirel, Facial expression recognition based on discriminative scale invariant feature transform. Electron. Lett. 46(5), 343–345 (2010)CrossRefGoogle Scholar
  73. 73.
    P. Sykora, P. Kamencay, R. Hudec, Comparison of SIFT and SURF methods for use on hand gesture recognition based on depth map. AASRI Procedia 9, 19–24 (2014)CrossRefGoogle Scholar
  74. 74.
    C.W. Tan, A. Kumar, Accurate iris recognition at a distance using stabilized iris encoding and Zernike moments phase features. IEEE Trans. Image Process. 23(9), 3962–3974 (2014)MathSciNetCrossRefGoogle Scholar
  75. 75.
    M.R. Teague, Image analysis via a general theory of moments. J. Opt. Soc. Am. 70(8), 920–930 (1980)MathSciNetCrossRefGoogle Scholar
  76. 76.
    M. Turk, A. Pentland, Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 71–86 (1991)CrossRefGoogle Scholar
  77. 77.
    L. Wang, M. Dai, An effective method for extracting singular points in fingerprint images. Int. J. Electron. Commun. 60(9), 671–676 (2006)CrossRefGoogle Scholar
  78. 78.
    Z. Wang, Q. Ruan, G. An, Facial expression recognition using sparse local fisher discriminant analysis. Neurocomputing 174(B), 756–766 (2016)Google Scholar
  79. 79.
    P.T. Yap, R. Paramesran, S.H. Ong, Image analysis by Krawtchouk moments. IEEE Trans. Image Process. 12(11), 1367–1377 (2003)MathSciNetCrossRefGoogle Scholar
  80. 80.
    R. Zhou, D. Zhong, J. Han, Fingerprint identification using SIFT-based minutia descriptors and improved all descriptor-pair matching. Sensors 13(3), 3142–3156 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • S. M. Mahbubur Rahman
    • 1
    Email author
  • Tamanna Howlader
    • 2
  • Dimitrios Hatzinakos
    • 3
  1. 1.Department of Electrical and Electronic EngineeringBangladesh University of Engineering and TechnologyDhakaBangladesh
  2. 2.Institute of Statistical Research and TrainingUniversity of DhakaDhakaBangladesh
  3. 3.Department of Electrical and Computer EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations